Advertisement

Multiscale Concentrated Solar Power

  • David GinleyEmail author
  • R. Aswathi
  • S. R. Atchuta
  • Bikramjiit Basu
  • Saptarshi Basu
  • Joshua M. Christian
  • Atasi Dan
  • Nikhil Dani
  • Rathindra Nath Das
  • Pradip Dutta
  • Scott M. Flueckiger
  • Suresh V. Garimella
  • Yogi Goswami
  • Clifford K. Ho
  • Shireesh Kedare
  • Sagar D. Khivsara
  • Pramod Kumar
  • C. D. Madhusoodana
  • B. Mallikarjun
  • Carolina Mira-Hernández
  • M. Orosz
  • Jesus D. Ortega
  • Dipti R. Parida
  • M. Shiva Prasad
  • K. Ramesh
  • S. Advaith
  • Sandip K. Saha
  • Shanmugasundaram Sakthivel
  • Sumit Sharma
  • P. Singh
  • Suneet Singh
  • Ojasve Srikanth
  • Vinod Srinivasan
  • Justin A. Weibel
  • Tim Wendelin
Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 39)

Abstract

This chapter highlights the multiscale concentrated solar power thrust, which focused on developing new low-cost manufacturable technologies for both high- and moderate-temperature thermal cycles. In the high-temperature range, the focus was on the supercritical carbon dioxide (s-CO2) Brayton cycle. Research involved developing low-cost heliostats coupled with novel bladed receivers and a novel CO2 test loop. A key focus was developing a functional testbed to evaluate and optimize the Brayton cycle as a cost-shared effort with the Indian Institute of Science. The project also investigated developing a novel helical receiver to heat the CO2. Extensive computational modeling of the thermal flow and gradients was conducted to develop the novel CO2 cycle. The program also pursued developing low-cost mirrors, absorbers, and troughs for Rankine cycle solar thermal parabolic trough technology. A new small-scale, positive-displacement organic Rankine cycle expander was developed and tested. Solution-based approaches were considered that promise low-cost manufacturing. Coupled with the heat-collection work were investigations of thermal storage approaches. Specifically, new molten salts were developed capable of much higher-temperature performance with improved thermal conductivity, and a new system was developed for low-temperature Rankine systems.

Keywords

Supercritical carbon dioxide (s-CO2Brayton cycle Rankine cycle Thermal storage High-temperature receivers Bladed receiver Heat-transfer fluid Mass flow rate Spectrally selective absorbers Materials genome Volumetric receiver Ceramic-based thermal storage Test loop Solar receiver tube Parabolic trough collector Absorber coating Positive-displacement organic Rankine cycle (ORC) expander Molten-salt storage Thermocline Levelized cost of energy 

References

  1. 1.
    C.K. Ho, M. Carlson, P. Garg, P. Kumar, Technoeconomic analysis of alternative solarized s-CO2 Brayton cycle configurations. J. Sol. Energy Eng. Trans. ASME 138(5), 051008 (2016)CrossRefGoogle Scholar
  2. 2.
    C.S. Turchi, Z.W. Ma, T.W. Neises, M.J. Wagner, Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. J. Sol. Energy Eng. Trans. ASME 135(4), 041007 (2013)CrossRefGoogle Scholar
  3. 3.
    B.D. Iverson, T.M. Conboy, J.J. Pasch, A.M. Kruizenga, Supercritical CO2 Brayton cycles for solar-thermal energy. Appl. Energy 111, 957–970 (2013)CrossRefGoogle Scholar
  4. 4.
    S.A. Wright, P.S. Pickard, R. Fuller, R.F. Radel, M.E. Vernon, Supercritical CO2 Brayton cycle power generation development program and initial test results. ASME Power Conference, 573–583 (2009). 2009Google Scholar
  5. 5.
    C.K. Ho, B.D. Iverson, Review of high-temperature central receiver designs for concentrating solar power. Renew. Sustain. Energy Rev. 29, 835–846 (2014)CrossRefGoogle Scholar
  6. 6.
    J.D. Ortega, A. Castellanos, S. Afrin, V. Kumar, C.K. Ho, Computational modeling of a high temperature direct tubular receiver design for supercritical CO2 Brayton cycle. Presented at ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, Chicago, IL, August 3–7, 2014 (2014)Google Scholar
  7. 7.
    J.M. Christian, J.D. Ortega, C.K. Ho, Novel tubular receiver panel configurations for increased efficiency of high-temperature solar receivers, in ASME Proceedings of the 9th International Conference on Energy Sustainability, San Diego, CA, June 28–July 2, 2015 (2015)Google Scholar
  8. 8.
    J.M. Christian, J.D. Ortega, C.K. Ho, J. Yellowhair, Design and modeling of light-trapping tubular receiver panels, in Proceedings of the ASME 2016 Power and Energy Conference, PowerEnergy2016-59158, Charlotte, North Carolina, June 26–30, 2016 (2016)Google Scholar
  9. 9.
    C.K. Ho, J.M. Christian, J.D. Ortega, J. Yellowhair, M.J. Mosquera, C.E. Andraka, Reduction of radiative heat losses for solar thermal receivers, in Proceedings of the SPIE Optics+Photonics Solar Energy+Technology High and Low Concentrator Systems for Solar Energy Applications IX, San Diego, August 17–21, 2014 (2014)Google Scholar
  10. 10.
    J.D. Ortega, J.M. Christian, C.K. Ho, Design and testing of a novel bladed receiver, in Proceedings of the ASME 11th International Conference on Energy Sustainability (2017)Google Scholar
  11. 11.
    J. Ortega, S. Khivsara, J. Christian, C. Ho, P. Dutta, Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation. Appl. Therm. Eng. 109(B), 979–987 (2016).  https://doi.org/10.1016/j.applthermaleng.2016.06.031CrossRefGoogle Scholar
  12. 12.
    J. Ortega, S. Khivsara, J. Christian, C. Ho, J. Yellowhair, Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation. Appl. Therm. Eng. 109(B), 970–978 (2016).  https://doi.org/10.1016/j.applthermaleng.2016.05.178CrossRefGoogle Scholar
  13. 13.
    P. Garg, P. Kumar, K. Srinivasan, Supercritical carbon dioxide Brayton cycle for concentrated solar power. J. Supercrit. Fluids 76, 54–60 (2013)CrossRefGoogle Scholar
  14. 14.
    E.G. Feher, The supercritical thermodynamic power cycle, in Proceedings of the Intersociety Energy Conversion Engineering Conference, Douglas Paper No. 4348 (1967)Google Scholar
  15. 15.
    E.G. Feher, Investigation of supercritical cycle. AstroPower laboratory, Missile & Space Systems Division, Technical Report AFAPL-TR-68-100, AD843063 (1968)Google Scholar
  16. 16.
    V. Dostal, P. Hejzlar, M.J. Driscoll, N.E. Todreas, A supercritical CO2 Brayton cycle for advanced reactor applications. Trans. Am. Nucl. Soc. 85, 110–111 (2001)Google Scholar
  17. 17.
    V. Dostal, A supercritical carbon dioxide cycle for next generation nuclear reactors. Ph.D. thesis, MIT-ANP-TR-100 (2004)Google Scholar
  18. 18.
    J.D. Ortega, J.M. Christian, J.E. Yellowhair, C.K. Ho, Coupled Optical-Thermal-Fluid Modeling of Novel Light-Trapping Tubular Panels for Concentrating Solar Power Receivers, in Proceedings of the 9th International Conference on Energy Sustainability (ES2015), San Diego, CA, June 28–July 2, 2015 (2015)Google Scholar
  19. 19.
    A. Dan, H.C. Barshilia, K. Chattopadhyay, B. Basu, Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review. Renew. Sust. Energ. Rev. 79, 1050–1077 (2017)CrossRefGoogle Scholar
  20. 20.
    C.E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials. NREL/TP-520-31267, National Renewable Energy Laboratory, Golden, Colorado (2002)Google Scholar
  21. 21.
    A. Dan, K. Chattopadhyay, H.C. Barshilia, B. Basu, Shifting of the absorption edge in TiB2/TiB(N)/Si3N4 solar selective coating for enhanced photothermal conversion. Sol. Energy 173, 192–200 (2018)CrossRefGoogle Scholar
  22. 22.
    A. Dan, A. Biswas, P. Sarkar, S. Kashyap, K. Chattopadhyay, H.C. Barshilia, B. Basu, Enhancing spectrally selective response of W/WAlN/WAlON/Al2O3–based nanostructured multilayer absorber coating through graded optical constants. Sol. Energy Mater. Sol. Cells 176, 157–166 (2018)CrossRefGoogle Scholar
  23. 23.
    A. Dan, K. Chattopadhyay, H.C. Barshilia, B. Basu, Angular solar absorptance and thermal stability of W/WAlN/WAlON/Al2O3-based solar selective absorber coating. Appl. Therm. Eng. 109, 997–1002 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Dan, K. Chattopadhyay, H.C. Barshilia, B. Basu, Thermal stability of WAlN/WAlON/Al2O3-based solar selective absorber coating. MRS Advances 1(41), 2807–2813 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Dan, B. Basu, T. Echániz, I.G. de Arrieta, G.A. López, H.C. Barshilia, Effects of environmental and operational variability on the spectrally selective properties of W/WAlN/WAlON/Al2O3-based solar absorber coating. Sol. Energy Mater. Sol. Cells 185, 342–350 (2018)CrossRefGoogle Scholar
  26. 26.
    N. Selvakumar, H.C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications. Sol. Energy Mater. Sol. Cells 98, 1–23 (2012)CrossRefGoogle Scholar
  27. 27.
    D.L. McDowell, S.R. Kalidindi, The materials innovation ecosystem: A key enabler for the materials genome initiative. MRS Bull. 41, 326–337 (2016)CrossRefGoogle Scholar
  28. 28.
    Q. Yan, J. Yu, S.K. Suram, L. Zhou, A. Shinde, P.F. Newhouse, W. Chen, G. Li, K.A. Persson, J.M. Gregoire, Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proc. Natl. Acad. Sci. 114, 3040–3043 (2017)CrossRefGoogle Scholar
  29. 29.
    M.L. Green, C.L. Choi, J.R. Hattrick-Simpers, A.M. Joshi, I. Takeuchi, S.C. Barron, E. Campo, T. Chiang, S. Empedocles, J.M. Gregoire, Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 4, 011105 (2017)CrossRefGoogle Scholar
  30. 30.
    A. Yosipof, O.E. Nahum, A.Y. Anderson, H.N. Barad, A. Zaban, H. Senderowitz, Data mining and machine learning tools for combinatorial material science of all-oxide photovoltaic cells. Mol. Inform. 34, 367–379 (2015)CrossRefGoogle Scholar
  31. 31.
    P. Dutta, High temperature solar receiver and thermal storage systems. Appl. Thermal Eng. 124, 624–632 (2017)CrossRefGoogle Scholar
  32. 32.
    O. Srikanth, S. Khivsara, R. Aswathi, C.D. Madhusoodana, Numerical and experimental evaluation of ceramic honeycombs for thermal energy storage. Transact. Indian Cer. Soc. 76(2), 1–6 (2017)Google Scholar
  33. 33.
    P. Garg, P. Kumar, P. Dutta, T. Conboy, C. Ho, Design of an experimental test facility for supercritical CO2 Brayton cycle. Presented at ASME 8th International Conference on Energy Sustainability, June 30–July 2, 2014, Boston, MA (2014)Google Scholar
  34. 34.
    O.P. Agnihotri, B.K. Gupta, Solar Selective Surfaces, 1st edn. (Wiley-Interscience Publication, New York, 1981)Google Scholar
  35. 35.
    C.E. Kennedy, Review of mid- to high-temperature solar selective absorber materials. NREL tech report, NREL/TP-520-31267 (2002)Google Scholar
  36. 36.
    K.R. Newby, Functional chromium plating. Met. Finish. 97, 223–247 (1999)CrossRefGoogle Scholar
  37. 37.
    V. Moise, R. Cloots, A. Rulmont, Study of the electrochemical synthesis of selective black coatings absorbing solar energy. Int. J. Inorg. Mater. 3, 1323–1329 (2001)CrossRefGoogle Scholar
  38. 38.
    K.D. Lee, Preparation and characterization of black chrome solar selective coatings. J. Korean Phys. Soc. 51, 135–144 (2007)CrossRefGoogle Scholar
  39. 39.
    Z. Zeng, A. Liang, J. Zhang, A review of recent patents on trivalent chromium plating. Recent Patents Mater. Sci. 2, 50–57 (2009)CrossRefGoogle Scholar
  40. 40.
    M. Shiva Prasad, K. Chandra Sekhar Reddy, S. Sakthivel, Development of cost efficient solar receiver tube with a novel tandem absorber system. Appl. Therm. Eng. 109, 988–996 (2016)CrossRefGoogle Scholar
  41. 41.
    S. Sakthivel, M. Shiva Prasad, B. Mallikarjun, S.V. Joshi, An improved performance of nanocomposite oxide selective absorber coating with excellent optical and thermal resistant properties and method of manufacturing the same. Indian Patent Application No.1111/DEL/2015 (2015)Google Scholar
  42. 42.
    A. Srinivasa Rao, S. Sakthivel, A highly thermally stable Mn–Cu–Fe composite oxide based solar selective absorber layer with low thermal loss at high temperature. J. Alloys Compd. 644, 906–915 (2015)CrossRefGoogle Scholar
  43. 43.
    F.G.F. Qin, X. Yang, Z. Ding, Y. Zuo, Y. Shao, R. Jiang, Thermocline stability criterions in single-tanks of molten salt thermal energy storage. Appl. Energy 97, 816–821 (2012)CrossRefGoogle Scholar
  44. 44.
    Z. Yang, Thermal analysis of solar thermal energy storage in a molten-salt thermocline. Sol. Energy 84, 974–985 (2010)CrossRefGoogle Scholar
  45. 45.
    T. Bauer, N. Breidenbach, M. Eck, Overview of molten salt storage systems and material development for solar thermal power plants. World Renewable Energy Forum 2012, 1–8 (2012)Google Scholar
  46. 46.
    K.V. Manu, P. Anand, U.K. Chetia, S. Basu, Effects of instabilities and coherent structures on the performance of a thermocline based thermal energy storage. Appl. Therm. Eng. 87, 768–778 (2015)CrossRefGoogle Scholar
  47. 47.
    S. Advaith, K.V. Manu, A. Tinaikar, U.K. Chetia, S. Basu, Interaction of vortex ring with a stratified finite thickness interface. Phys. Fluids 29(9), 093602 (2017)CrossRefGoogle Scholar
  48. 48.
    S. Advaith, A. Punia, U. Kumar Chetia, N. Dani, K. Chattopadhyay, S. Basu, Stability Analysis of an Oil Based Thermocline Energy Storage System, in Proceedings of the International Conference on Sustainable Energy and Environmental Challenges (SEEC) (2018)Google Scholar
  49. 49.
    A. Tinaikar, S. Advaith, U.K. Chetia, K.V. Manu, S. Basu, Spatio-temporal disruption of thermocline by successive laminar vortex pairs in a single tank thermal energy storage. Appl. Therm. Eng. 109, 924–935 (2016)CrossRefGoogle Scholar
  50. 50.
    P. Deepu, S. Dawande, S. Basu, Instabilities in a fluid overlying an inclined anisotropic and inhomogeneous porous layer. J. Fluid Mech. 762, R2 (2015)MathSciNetCrossRefGoogle Scholar
  51. 51.
    S. Hatte et al., Short and long-term sensitivity of lab-scale thermocline based thermal storage to flow disturbances. Appl. Therm. Eng. 109, 936–948 (2016)CrossRefGoogle Scholar
  52. 52.
    S.V. Garimella, Review of molten-salt thermocline tank modeling for solar thermal energy storage. Heat Transf. Eng. 34(10), 787–800 (2013)CrossRefGoogle Scholar
  53. 53.
    P.K. Madathil et al., Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications. Appl. Therm. Eng. 109, 901–905 (2016)CrossRefGoogle Scholar
  54. 54.
    K.M. Pramod, P.V.C. Rao, N.V. Choudary, K. Ramesh, Novel methodology to prepare homogenous ternary molten salts for concentrated solar power applications and their thermo-physical characterization. Appl. Therm. Eng. 109, 906–910 (2016)CrossRefGoogle Scholar
  55. 55.
    K. Ramesh, K.M. Pramod, P.V.C. Rao, N.V. Choudary, A Process for Preparation of Homogenous Mixture for Thermal Storage and Heat Transfer Applications. Google Patents, 2017Google Scholar
  56. 56.
    S.M. Flueckiger, Z. Yang, S.V. Garimella, Review of molten-salt thermocline tank modeling for solar thermal energy storage. Heat Transf. Eng. 34, 787–800 (2013)CrossRefGoogle Scholar
  57. 57.
    S.M. Flueckiger, B.D. Iverson, S.V. Garimella, J.E. Pacheco, System-level simulation of a solar power tower plant with thermocline thermal energy storage. Appl. Energy 113, 86–96 (2014)CrossRefGoogle Scholar
  58. 58.
    S.M. Flueckiger, B.D. Iverson, S.V. Garimella, Economic optimization of a concentrating solar power plant with molten-salt thermocline storage. J. Sol. Energy Eng. 136(1), 011015 (2013)CrossRefGoogle Scholar
  59. 59.
    S.M. Flueckiger, S.V. Garimella, Latent heat augmentation of thermocline energy storage for concentrating solar power – a system-level assessment. Appl. Energy 116, 278–287 (2014)CrossRefGoogle Scholar
  60. 60.
    C. Mira-Hernández, S.M. Flueckiger, S.V. Garimella, Comparative analysis of single- and dual-media thermocline tanks for thermal energy storage in concentrating solar power plants. J. Sol. Energy Eng. 137(3), 031012 (2015)CrossRefGoogle Scholar
  61. 61.
    M. Prabhakar, S. Singh, S.K. Saha, Heat transfer characterization of latent heat thermal energy storage system using fins in solar thermal power plant. Presented at Third Southern African Solar Energy conference, SASEC 2015 11−13, 2015 (2015)Google Scholar
  62. 62.
    K. Bhagat, M. Prabhakar, S.K. Saha, Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage. J. Energy Storage 19, 135–144 (2018).  https://doi.org/10.1016/j.est.2018.06.014CrossRefGoogle Scholar
  63. 63.
    A. Kumar, S.K. Saha, Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix. Appl. Therm. Eng. 109(B), 911–923 (2016).  https://doi.org/10.1016/j.applthermaleng.2016.04.161CrossRefGoogle Scholar
  64. 64.
    A. Kumar, S.K. Saha, Latent heat thermal storage with variable porosity metal matrix: A numerical study. Renew. Energy 125, 962–973 (2018).  https://doi.org/10.1016/j.renene.2018.03.030CrossRefGoogle Scholar
  65. 65.
    A. Kumar, S.K. Saha, Second law analysis of latent heat thermal storage for ORC-based solar thermal power plant. Presented at International Conference on Advances in Energy Research, December 15–17, 2015, IIT Bombay (2015)Google Scholar
  66. 66.
    S. Halder, S. Singh, S.K. Saha, Numerical simulation of latent heat thermal storage using metal matrix and foam for solar thermal power plant. Presented at third southern African solar energy conference, SASEC 2015, May 11−13, 2015 (2015)Google Scholar
  67. 67.
    R. Shah, S.K. Saha, Thermal performance of multitube latent heat thermal storage using metal matrix for solar applications: A numerical study. Heat Transf. Res. 50, 545 (2018).  https://doi.org/10.1615/HeatTransRes.2018024568CrossRefGoogle Scholar
  68. 68.
    K. Bhagat, S.K. Saha, Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant. Renew. Energy 95, 323–336 (2016).  https://doi.org/10.1016/j.renene.2016.04.018CrossRefGoogle Scholar
  69. 69.
    A. Kumar, P. Shahi, S.K. Saha, Experimental study of latent heat thermal energy storage system for medium temperature solar applications. In Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering (MCM’18), Madrid, Spain, Paper No. HTFF 152, August 16–18, 2018 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • David Ginley
    • 1
    Email author
  • R. Aswathi
    • 2
  • S. R. Atchuta
    • 3
  • Bikramjiit Basu
    • 4
  • Saptarshi Basu
    • 5
  • Joshua M. Christian
    • 6
  • Atasi Dan
    • 4
  • Nikhil Dani
    • 5
  • Rathindra Nath Das
    • 2
  • Pradip Dutta
    • 7
  • Scott M. Flueckiger
    • 8
  • Suresh V. Garimella
    • 9
  • Yogi Goswami
    • 10
  • Clifford K. Ho
    • 6
  • Shireesh Kedare
    • 11
  • Sagar D. Khivsara
    • 7
  • Pramod Kumar
    • 7
  • C. D. Madhusoodana
    • 2
  • B. Mallikarjun
    • 3
  • Carolina Mira-Hernández
    • 12
  • M. Orosz
    • 13
  • Jesus D. Ortega
    • 6
  • Dipti R. Parida
    • 7
  • M. Shiva Prasad
    • 3
  • K. Ramesh
    • 14
  • S. Advaith
    • 5
  • Sandip K. Saha
    • 15
  • Shanmugasundaram Sakthivel
    • 3
  • Sumit Sharma
    • 11
  • P. Singh
    • 7
  • Suneet Singh
    • 11
  • Ojasve Srikanth
    • 2
  • Vinod Srinivasan
    • 7
  • Justin A. Weibel
    • 9
  • Tim Wendelin
    • 1
  1. 1.National Renewable Energy LaboratoryGoldenUSA
  2. 2.Corporate R&D DivisionCeramic Technological Institute, Bharat Heavy Electricals Limited Corporate R&DBangaloreIndia
  3. 3.International Advanced Research Centre for Powder Metallurgy and New MaterialsHyderabadIndia
  4. 4.Materials Research Centre, Indian Institute of Science-BangaloreBangaloreIndia
  5. 5.Department of Mechanical EngineeringInterdisciplinary Centre for Energy Research, Indian Institute of Science-BangaloreBengaluruIndia
  6. 6.Sandia National LaboratoriesAlbuquerqueUSA
  7. 7.Department of Mechanical EngineeringIndian Institute of Science-BangaloreBengaluruIndia
  8. 8.School of Electrical and Computer Engineering, Hall for Discovery and Learning Research, Purdue UniversityWest LafayetteUSA
  9. 9.School of Mechanical Engineering, Purdue UniversityWest LafayetteUSA
  10. 10.University of Southern FloridaTampaUSA
  11. 11.Department of Energy Science and EngineeringIndian Institute of Technology Bombay (IIT Bombay)MumbaiIndia
  12. 12.School of Chemical Engineering, Forney Hall of Chemical Engineering, Purdue UniversityWest LafayetteUSA
  13. 13.Massachusetts Institute of TechnologyCambridgeUSA
  14. 14.Corporate R&D DivisionHindustan Petroleum Corporation Limited Green R&D Center, BangaloreBangaloreIndia
  15. 15.Department of Mechanical EngineeringIndian Institute of Technology-BombayMumbaiIndia

Personalised recommendations