Skip to main content

Propagation and Application of Larval Parasitoids

  • Chapter
  • First Online:
Cottage Industry of Biocontrol Agents and Their Applications

Abstract

Potential of larval parasitoids through monitoring the abundance, mass production and the field application were aimed and reviewed. There are two larval parasitoid kinds; Endoparasitoids: it develops within the body of their larvae and Ectoparasitoids grows out of larvae bodies. Chemical communication between hosts and larval parasitoids is one of most interested aspects of reciprocal communication between insects. The host scent plays an important role in the attraction for specific larval parasitoids. In general, there are biocontrol agents in nature (field crops, vegetables, fruit orchards and forests), and they have been preventing some species from insect outbreaks. Mass rearing of biocontrol agents contains the production of thousand/millions of insects (host and bio-agent), objectives to control some insect pests. One goal in pest control is to develop managing strategies that kill insect pests without harming the environment or other organisms. An ideal method would be to enhance larval parasitoids to control some insect pest species. This can be accomplished by mass releasing the biological control agents for controlling many of agricultural insect pests. The mass-production and release of beneficial insects are affected by several factors like as supplemental food, environmental conditions and the host. There are many practices which could conserve the larval parasitoids under different ecological conditions such as plant-provided food, food sprays, semiochemicals, and induced plant responses. There are landscape factors affect insect populations and associated natural enemies such as farm scale, crop diversity, pest density, field size and shape and field margins. Combination among larval parasitoids with other biocontrol agents seems to be well suited to protecting many crops, vegetables or fruit orchards from insect infestations. The different biocontrol strategies would use in the appropriate routines against certain insects in large areas. This could result in significant and important synergistic effects on pest population suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saleh MME, El-Wakeil NE, Elbehery H, Gaafar N, Fahim S (2019) Biological pest control for sustainable agriculture in Egypt, Springer Publisher. In: Negm AM, Abu-Hashim M (eds) Sustainability of agricultural environment in Egypt: Part II ISBN 978-3-319-95356-4, © Springer Nature Switzerland AG 2019—Soil-water-plant Nexus, Hdb Environ Chem 77:145–188. https://doi.org/10.1007/978-3-319-95357-1

  2. DeBach P, Rosen D (1991) Biological control by natural enemies, 2nd edn. Cambridge University Press, Cambridge, pp 440. ISBN 0-521-39191-1

    Google Scholar 

  3. Tawfik MFS (1997) Biological control for insect pests (in Arabic), 2nd edn. Academic Bookshop, Cairo, 757 p

    Google Scholar 

  4. Gurr G, Wratten S (2000) Biological control: measures of success. Springer Science+ Business Media, Dordrecht, 429 pp

    Google Scholar 

  5. El-Heneidy AH, Hosny ME, Ramadan MM (2016) Adaptation and first field release of Aganaspis daci, a larval parasitoid of the peach fruit fly, Bactrocera zonata, in Egypt. In: Proceedings of 9th ISFFEI, pp 395–400. ISBN: 978-616-358-207-2

    Google Scholar 

  6. El-Wakeil NE, Abd-Alla AM, El Sebai TN, Gaafar NM (2015) Effect of organic sources of insect pest management strategies and nutrients on cotton insect pests. In: Gorawala P, Mandhatri S (eds) In frame of book Agricultural research updates, chap 2, vol 10, pp 49–81. ISBN: 978-1-63482-745-4

    Google Scholar 

  7. El-Wakeil NE, Saleh MME, Gaafar N, Elbehery H (2017) Conservation biological control practices. In: Frame of book biological control of pest and vector insects, chap 3. Published by Intech Open Access. ISBN 978-953-51-5041-1

    Google Scholar 

  8. El-Wakeil N, Gaafar N, Sallam A, Volkmar C (2013) Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. In: Trdan S (ed) Agricultural and biological sciences “insecticides—development of safer and more effective technologies”. Intech, Rijeka, Croatia, pp 1–54

    Google Scholar 

  9. Brower JH, Smith L, Vail PV, Flinn PW (1996) Biological control. In: Subramanyam BH, Hagstrum DW (eds) Integrated management of insects in stored products. Marcel Dekker, New York, pp 223–286

    Google Scholar 

  10. Schöller M, Prozell S, Al-Kirshi AG, Reichmuth CH (1997) Towards biological control as a major component of integrated pest management in stored product protection. J Stored Prod Res 33:81–97

    Article  Google Scholar 

  11. Adler C, Schöller M (1998) Integrated protection of stored products. In: IOBC wprs bulletin 21 international organization for biological and integrated control of noxious animals and plants, Dijon, France, 173 pp

    Google Scholar 

  12. Schöller M, Flinn PW (2000) Parasitoids and predators. In: Subramanyam B, Hagstrum DW (eds) Alternatives to pesticides in stored-product IPM. Springer, Boston, MA

    Google Scholar 

  13. Araújo A, Jansen AM, Bouchet F, Reinhard K, Ferreira LF (2003) Parasitism, the diversity of life, and paleoparasitology. Mem Inst Oswaldo Cruz 98:5–11

    Google Scholar 

  14. Dabhi (2011) Comparative biology of Bracon hebetor say on seven lepidopteran hosts. Karnataka J Agric Sci 24:549–550

    Google Scholar 

  15. Shaw MR (1987) Host associations of species of Eulophus in Britain (Hymenoptera: Eulophidae). Entomol Gaz 38:59–63

    Google Scholar 

  16. Venkatesan T, Jalali SK, Srinivasa Murthy K, Rabindra RJ, Rao NS (2006) Field evaluation of different doses of Goniozus nephantidis (Muesebeck) for the suppression of Opisina arenosella Walker on coconut. Inter J Cocon R&D (CORD). 22:78–84

    Google Scholar 

  17. Burke GR (2016) Analysis of genetic variation across the encapsidated genome of Microplitis demolitor bracovirus in parasitoid wasps. PLoS ONE 11:e0158846. https://doi.org/10.1371/journal.pone.0158846

    Article  CAS  Google Scholar 

  18. Brewer FD, King EG (1981) Food consumption and utilization by sugarcane borers parasitized by Apanteles flavipes. J Georgia Entomol Soc 16:181–185

    Google Scholar 

  19. Botelho PS, Macedo N (2002) Cotesia flavipes para o controle de Diatraea saccharalis, pp 409–421. In: Parra JRP, Botelho PSM, Corrêa-Ferreira BS, JMS Bento (eds) Controle Biológico no Brasil: Parasitóides e Predadores, São Paulo, Manole, 646 p

    Google Scholar 

  20. Nixon GEJ (1965) A reclassification of the tribe Migrogasterini {Hymenoptera: Braconidae). Bull Br Mus (Nat. Hist) Entamol Suppl 2:6–7

    Google Scholar 

  21. Rao RY, Cherian MC, Ananthanarayanan KP (1948) Infestation of Nephantis serinopa Meyr. in South India and their control by biological method. Indian J Entomol 10:205–247

    Google Scholar 

  22. Huang C, Peng W-K, Talekar NS (2003) Parasitoids and other natural enemies of Maruca vitrata feeding on Sesbania cannabina in Taiwan. Biocontrol 48:407–416

    Article  Google Scholar 

  23. Yan ZG, Wang CZ (2006) Similar attractiveness of maize volatiles induced by Helicoverpa armigera and Pseudaletia separata to the generalist parasitoid Campoletis chlorideae. Entomol Exp Appl 118:87–96

    Article  CAS  Google Scholar 

  24. Kumar N, Kumar A, Tripathi CPM (1994) Functional response of Campoletis chlorideae Uchida (Ichneumonidae), a parasitoid of Heliothis armigera (Hubner) (Noctuidae) in an enclosed experimental system. Biol Agric Hort 10:287–295

    Article  Google Scholar 

  25. Shaw MR, Huddleston T (1991) Classification and biology of braconid wasps (Hymenoptera: Braconidae), vol 7. Royal Entomological Society, London, 126 pp. http://www.royensoc.co.uk/sites/default/files/Vol07_Part11.pdf

  26. David H, Easwaramoorthy S (1986) Biological control. In: David H, Easwaramoorthy S, Jayanthi RO (eds) Sugarcane entomology in India. Sugarcane Breeding Institute, Coimbatore, pp 383–421

    Google Scholar 

  27. Singh OP (1977) Integrated control of sugarcane stalk borer, Chilo auricilius Ddgn. Sug News 9:36–43

    Google Scholar 

  28. Chaudhary JP, Yadav SR, Singh SP (1980) Some observations on the biology and host preference of Sturmiopsis inferens Townsend (Tachinidae: Diptera). Indian J Agric Res 14:147–154

    Google Scholar 

  29. Postali JR, Machado PS, De Sene A (2010) Biological control of pests and a key component for sustainable sugarcane production. In: Barbosa LA (ed) Sugarcane bioethanol R&D for productivity and sustainability. Blucher Brazilian science and technology, Sao Paulo, Brazil, pp 441–450

    Google Scholar 

  30. Rajchard J (2013) Kairomones important substances in interspecific communication in vertebrates: a review. Vet Med 58:561–566

    Article  CAS  Google Scholar 

  31. Lewis WJ, Martin WRJR (1990) Semiochemicals for use with parasitoids: status and future. J Chem Ecol 16:3067–3089

    Article  CAS  Google Scholar 

  32. Shonouda ML, Nasr FN (1998) Impact of larval-extract (kairomone) of Ephesiia kuehniella Zell. on the behaviour of the parasitoid Bracon hebetor. J Appl Ent 122:33–35

    Article  Google Scholar 

  33. Kigathi RN, Unsicker SB, Reichelt M, Kesselmeier J, Gershenzon J, Weisser WW (2009) Emission of volatile organic compounds after herbivory from Trifolium pratense (L.) under laboratory and field conditions. J Chem Ecol 35:1335–1348

    Article  CAS  Google Scholar 

  34. Strand MR, Williams HJ, Vinson SB, Mudd A (1989) Kairomonal activities of 2-acylcyclohexane-1, 3- diones produced by Ephestia kuehniella Zeller in eliciting searching behaviour by the parasitoid Bracon hebetor Say. J Chem Ecol 15:1491–1500

    Article  CAS  Google Scholar 

  35. Murali Baskaran RK, Sharma KC, Kumar J (2017) Seasonal and relative abundance of stem-borer and leaf-folder in wet land rice eco-system. J Entomol Zool Stud 5:879–884

    Google Scholar 

  36. Fayad YH, Hafez M, El-Kifl AH (1979) Survey of the natural enemies of the three corn borers Sesamia cretica, Chilo agamemnon and Ostrinia nubilalis in Egypt. Agric Res Rev 57:29–33

    Google Scholar 

  37. EL-Heneidy AH, Sekamatte BM (1998) Survey of larval parasitoids of the cotton bollworms in Uganda. Bull Soc Entomol Egypt 76:125–134

    Google Scholar 

  38. Elbehery H (2013) Biological, ecological and genetical studies on the parasitoid, Bracon spp. (Braconidae). Faculty of Science, Ain Shams University, Egypt 142 pp

    Google Scholar 

  39. Abd El-Wahab TE, El-Behery HHA, Farag NA (2016) Evaluation of some honey bee products as artificial diets for rearing the parasitoid Bracon hebetor Say (Hymenoptera: Braconid). Egypt J Biol Pest Cont 26:309–312

    Google Scholar 

  40. Kares EA, Ebaid GH, El-Sappagh IA (2009) Biological studies on the larval parasitoid species Bracon brevicornis reared on different insect hosts. Egypt J Biolog Pest Control 19:165–168

    Google Scholar 

  41. Zaki FN, El-Saadany G, Gomaa A, Saleh MME (1998) Increasing rates of parasitism of the larval parasitoid Bracon brevicornis (Hym., Braconidae) by using kairomones, pheromones and a supplementary food. J Appl Ent 122:565–567

    Article  CAS  Google Scholar 

  42. Zaki FN, El-Shaarawy MF, Farag NA (1999) Release of two predators and two parasitoids to control aphids and whiteflies. J Pest Sci 72:19–20

    Google Scholar 

  43. Kumar KK, Sridhar J, Murali-Baskaran RK, Senthil-Nathan S, Kaushal P, Dara SK, Arthurs S (2018) Microbial biopesticides for insect pest management in India: current status and future prospects. J Invertebr Pathol. https://doi.org/10.1016/j.jip.2018.10.008

    Article  Google Scholar 

  44. Morales-Ramos JA, Rojas MG (2003) Natural enemies and pest control: an integrated pest management concept. In: Koul O, Dhaliwal GS (eds) Predators and parasitoids. Taylor and Francis, London, UK, pp 17–39

    Google Scholar 

  45. Nation JL (2002) Insect physiology and biochemistry. CRC Press, Boca Raton, USA

    Google Scholar 

  46. Gillespie MAK, Gurr GM, Wratten SD (2016) Beyond nectar provision: the other resource requirements of parasitoid biological control agents. Ent Exp Appl 159:207–221

    Article  Google Scholar 

  47. Broodryk SW (1971) The biology of Diadegma stellenboschense, a parasitoid of potato tuber moth. J Entomol Soc S Afr 34:413–423

    Google Scholar 

  48. Idris AB, Grafius E (1995) Wildflowers as nectar sources for Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of the diamondback moth (Lepidoptera: Yponomeutidae). Environ Entomol 24:1726–1735

    Article  Google Scholar 

  49. Ooi PAC (1980) Laboratory studies of Diadegma cerophagus (Hym.: Ichneumonidae), a parasite introduced to control Plutella xylostella (Lep.: Yponomeutidae) in Malaysia. Entomophaga 25:249–259

    Article  Google Scholar 

  50. Yang JC, Chu YI, Talekar NS (1993) Biological Studies of Diadegma semiclausum (Hym. Ichneumonidae), a parasite of Diamondback Moth. Entomophaga 38:579–586

    Article  Google Scholar 

  51. Sithole R, Chinwada P, Lohr BL (2018) Effects of host larval stage preferences and diet on life history traits of Diadegma mollipla, an African parasitoid of the Diamondback Moth. Biocont Sci Technol 28:172–184

    Article  Google Scholar 

  52. Grenier S (2009) In vitro rearing of entomophagous insects—past and future trends: a minireview. Bull Insectol 62:1–6

    Google Scholar 

  53. Riddick EW (2009) Benefit and limitations of factitious prey and artificial diets on life parameters of predatory beetles, bugs, and lacewings: a mini-review. Biocontrol 54:325–339

    Article  Google Scholar 

  54. Riddick EW, Chen H (2014) Production of coleopteran predators. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Elsevier, Amsterdam, The Netherlands, pp 17–55

    Google Scholar 

  55. De Clercq P, Coudron TA, Riddick EW (2014) Production of heteropteran predators. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Elsevier, Amsterdam, The Netherlands, pp 57–100

    Google Scholar 

  56. Dindo ML, Grenier S (2014) Production of dipteran parasitoids. In: Moralesramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Elsevier, Amsterdam, The Netherlands, pp 101–143

    Google Scholar 

  57. Cancino J, Montoya P (2006) Advances and perspectives in the mass rearing of fruit fly parasitoids in Mexico. N, Brazil (Web)

    Google Scholar 

  58. Salim M, Gökçe A, Naqqash MN, Bakhsh A (2016) An overview of biological control of economically important lepidopteron pests with parasitoids. J Entomol Zoology Stud 4:354–362

    Google Scholar 

  59. Godfray HCJ (1994) Parasitoids, behavioral and evolutionary ecology. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  60. Charnov EL (1976) Optimal foraging: the marginal value theorem. Theor Popul Biol 9:129–136

    Article  CAS  Google Scholar 

  61. Farag NA, Ismail IA, Elbehery HHA, Abdel-Rahman RS, Abdel-Raheem MA (2015) Life table of Bracon hebetor. (Braconidae) reared on different hosts. Internat J Chem Tech Res 9:123–130

    Google Scholar 

  62. Wäckers FL, van Rijn PCJ, Bruin J (eds) (2005) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  63. Koptur S (2005) Nectar as fuel for plant protectors. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, UK, pp 75–108

    Google Scholar 

  64. Gurr GM, Wratten SD, Barbosa P (2000) Success in conservation biological control of arthropods. In: Gurr GM, Wratten SD (eds) Biological control: measures of success. Kluwer, Dordrecht, pp 105–132

    Chapter  Google Scholar 

  65. Wade MR, Zalucki MP, Wratten SD, Robinson KA (2008) Conservation biological control of arthropods using artificial food sprays: current status and future challenges. Biol Cont 45:185–199

    Article  Google Scholar 

  66. Messelink GJ, Bennison J, Alomar O, Ingegdno BL, Tavella L, Shipp L, Palevsky E, Wackers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. Biocontrol 59:377–393

    Article  Google Scholar 

  67. Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG, Leeson G, Nicol HI, Orre-Gordon GUS (2011) Attract and reward: combining chemical ecology and habitat manipulation to enhance biological control in field crops. J Appl Ecol 48:580–590

    Article  Google Scholar 

  68. Kaplan I (2012) Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? Biol Cont 60:77–89

    Article  Google Scholar 

  69. El-Wakeil NE (1997) Ecological studies on certain natural enemies of maize and sorghum pests, M.sc. Faculty of Agriculture Cairo University, Egypt, p 212

    Google Scholar 

  70. Gerling D, Alomarb O, Arnó J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20:779–799

    Article  Google Scholar 

  71. Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  Google Scholar 

  72. Araj SE, Wratten S, Lister A, Buckley H (2009) Adding floral nectar resources to improve biological control: potential pitfalls of the fourth trophic level. Basic Appl Ecol 10:554–562

    Article  Google Scholar 

  73. Lavandero IB, Wratten SD, Didham RK, Gurr G (2006) Increasing floral diversity for selective enhancement of biological control agents: a double-edged sward? Basic Appl Ecol 7:236–243

    Article  Google Scholar 

  74. Wäckers FL, Bonifay C (2004) How to be sweet? Extrafloral nectar allocation by Gossypium hirsutum fits optimal defense theory predictions. Ecology 85:1512–1518

    Article  Google Scholar 

  75. Kappers IF, Aharoni A, van Herpen T, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    Article  CAS  Google Scholar 

  76. van Emden HF (1990) Plant diversity and natural enemy efficiency in agroecosystems. In: Mackauer M, Ehler L, Roland J, West KJ, Miller JC (eds) Critical issues in biocontrol. Intercept, Andover, UK, pp 63–80

    Google Scholar 

  77. Coombes DS, Sotherton NW (1986) The dispersal and distribution of polyphagous predatory coleoptera in cereals. Ann Appl Biol 108:461–474

    Article  Google Scholar 

  78. Dyer LE, Landis DA (1996) Effects of habitat, temperature, and sugar availability on longevity of Eriborus terebrans. Environ Entomol 25:1192–1201

    Article  Google Scholar 

  79. Dyer LE, Landis DA (1997) Influence of noncrop habitats on the distribution of Eriborus terebrans (Hymenoptera: Ichneumonidae) in cornfields. Environ Entomol 26:924–932

    Article  Google Scholar 

  80. Perrin RM (1977) Pest management in multiple cropping systems. Agro-ecosystems 3:93–118

    Article  Google Scholar 

  81. Dempster JP (1969) Some effects of weed control on the numbers of the small cabbage white (Pieris rapae) on Brussels sprouts. J Appl Ecol 6:339–345

    Article  Google Scholar 

  82. Foster MS, Ruesink WG (1984) Influence of flowering weeds associated with reduced tillage in corn on a black cutworm (Lepidoptera: Noctuidae), parasitoid Meteorus rubens (Nees von Esenbeck). Environ Entomol 13:664–668

    Article  Google Scholar 

  83. Krombein KV, Hurd PD, Smith DR Jr, Burks BD (1979) Catalog of hymenoptera in America north of Mexico. Smithsonian Institution, Washington, DC

    Google Scholar 

  84. Covell CV (1984) A field guide to the moth of eastern North America. Houghton Mifflin, Boston, Massachusetts, USA

    Google Scholar 

  85. West KJ, Miller JC (1989) Patterns of host exploitation by Meteorus cummunis (Hymenoptera: Braconidae). Enviro Entomol 18:537–540

    Article  Google Scholar 

  86. Marino PC, Landis DA (1996) Effect of landscape structure on parasitoid diversity in agroecosystems. Ecol Appl 6:276–284

    Article  Google Scholar 

  87. Menalled FD, Marino PC, Gage SH, Landis DA (1999) Does agricultural landscape structure affect parasitism and parasitoid diversity? Ecol Appl 9:634–641

    Article  Google Scholar 

  88. Shaw MR (1994) Parasitoid host ranges. In: Hawkins BA, Sheehan W (eds) Parasitoid community ecology. Oxford University Press, Oxford, UK, pp 111–114

    Google Scholar 

  89. Corbett A, Rosenheim JA (1996) Impact of a natural enemy overwintering refuge and its interaction with the surrounding landscape. Ecol Entomol 21:155–164

    Article  Google Scholar 

  90. Grieshop JG, Flinn PW, Nechols JR (2006) Biological control of Indian meal moth on finished stored products using egg and larval parasitoids. J Econ Entomol 99:1080–1084

    Article  Google Scholar 

  91. May RM, Hassell MP (1981) The dynamics of multiparasitoid host interactions. Am Nat 117:234–261

    Article  Google Scholar 

  92. Hogarth WL, Diamond P (1984) Interspecific competition in larvae between entomophagous parasitoids. Am Nat 124:552–560

    Article  Google Scholar 

  93. Kakehashi M, Suzuki Y, Iwasa Y (1984) Niche overlap of parasitoids in host parasitoid systems: its consequences to single versus multiple introduction controversy in biological control. J Appl Ecol 21:115–131

    Article  Google Scholar 

  94. Briggs CJ (1993) The effect of multiple parasitoid species on the gallforming midge Rhopalomyia californica, Ph.D. thesis, California University, Santa Barbara

    Google Scholar 

  95. Huffaker CB, Kennett CE (1966) Studies of two parasites of olive scale, Parlatoria oleae (Colvee). IV. Biological control of Parlatoria oleae (Colvee) through the compensatory action of two introduced parasites. Hilgardia 37:283–355

    Article  Google Scholar 

  96. DeBach P, Rosen D, Kennett CE (1971) Biological control of coccids by introduced natural enemies. In: Huffaker CB (ed) Biological control. Plenum, New York, pp 165–194

    Google Scholar 

  97. Force DC (1974) Ecology of insect host parasitoid communities. Science 184:624–632

    Article  CAS  Google Scholar 

  98. Takagi M, Hirose Y (1994) Building parasitoid communities: the complementary role of two introduced parasitoid species in a case of successful biological control. In: Hawkins BA, Sheehan W (eds) Parasitoid community ecology. Oxford University Press, New York, pp 437–448

    Google Scholar 

  99. Briggs CJ, Latto J (2001) Interactions between the egg and larval parasitoids of a gall-forming midge and their impact on the host. Ecol Entomol 26:109–116

    Article  Google Scholar 

  100. Ferracini C, Ingegno BL, Navone P, Ferrari E, Mosti M, Tavella L, Alberto A (2012) Adaptation of indigenous larval parasitoids to Tuta absoluta (Lepidoptera: Gelechiidae) in Italy. J Econ Entomol 105:1311–1319

    Article  Google Scholar 

  101. Urbaneja A, Gonzalez-Cabrera J, Arn J, Gabarra R (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag Sci 68:1215–1222

    Article  CAS  Google Scholar 

  102. Biondi A, Desneux N, Amiens-Desneux E, Siscaro G, Zappalà L (2013) Biology and developmental strategies of the Palaearctic parasitoid Bracon nigricans (Braconidae) on the Neotropical moth Tuta absoluta (Gelechiidae). J Econ Entomol 106:1638–1647

    Article  Google Scholar 

  103. Bathon H (1996) Impact of entomopathogenic nematodes on nontarget hosts. Biocontrol Sci Technol 6:421–434

    Article  Google Scholar 

  104. Hochberg ME, Hassell MP, May RM (1990) The dynamics of host–parasitoid–pathogen interactions. Am Nat 135:74–94

    Article  Google Scholar 

  105. Lacey LA, Unruh TR, Headrick HL (2003) Interactions of two idiobiont parasitoids (Ichneumonidae) of codling moth (Tortricidae) with the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). J Inverteb Pathol 83:230–239

    Article  Google Scholar 

  106. Kaya HK (1978) Interaction between Neoaplectana carpocapsae (Nematoda: Steinernematidae) and Apanteles militaris (Hymenoptera: Bracondiae), a parasitoid of the armyworm, Pseudaletia unipuncta. J Invertebr Pathol 31:358–364

    Article  Google Scholar 

  107. Zaki FN, Awadallah KT, Gersraha MA (1997) Competitive interaction between the braconid parasitoid, Meteorus rubens Nees and the entomogenous nematode, Steinernema carpocapsae (Weiser) on larvae of Agrotis ipsilon. J Appl Entomol 121:151–153

    Article  Google Scholar 

  108. Sher RB, Parrella MP, Kaya HK (2000) Biological control of the leafminer, Liriomyza trifolii (Burgess): implications for intraguild predation between Diglyphus begini Ashmead and Steinernema carpocapsae (Weiser). Biol Cont 17:155–163

    Article  Google Scholar 

  109. Begon M, Sait SM, Thompson DJ (1997) Two’s company, three’s a crowd: host–pathogen–parasitoid dynamics. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford, pp 307–332

    Google Scholar 

  110. Brooks WM (1993) Host–parasitoid–pathogen interactions. In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens of insects, vol 2. Pathogens. Academic Press, San Diego, pp 231–272

    Google Scholar 

  111. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vasquez CA, González-Cabrera J, Ruescas DC, Tabone E, Frandon J (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215

    Article  Google Scholar 

  112. Batalla-Carrera L, Morton A, García-del-Pino F (2010) Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. Biocontrol 55:523–530

    Article  Google Scholar 

  113. Colomo MV, Berta DC, Chocobar MJ (2002) El complejo de himenópteros parasitoides que atacan a la “polilla del tomate” Tuta absoluta en la Argentina. Acta Zool Lilloana 46:81–92

    Google Scholar 

  114. Marchiori CH, Silva CG, Lobo AP (2004) Parasitoids of Tuta absoluta collected on tomato plants in Lavras, state of Minas Gerais, Brazil. Braz J Biol 64:551–552

    Article  CAS  Google Scholar 

  115. Miranda MMM, Picanc MC, Zanuncio JC, Bacci L, da Silva EM (2005) Impact of integrated pest management on the population of leafminers, fruit borers, and natural enemies in tomato. Cienc Rural 35:204–208

    Google Scholar 

  116. Bajonero J, Córdoba N, Cantor F, Rodríguez D, Cure YJR (2008) Biology and life circle of Apanteles gelechiidivoris (Hymenoptera: Braconidae) parasitoid of Tuta absoluta (Lepidoptera: Gelechiidae). Agron Colomb 26:417–426

    Google Scholar 

  117. Sánchez NE, Pereyra PC, Luna MG (2009) Spatial patterns of parasitism of the solitary parasitoid Pseudapanteles dignus on the tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Environ Entomol 38:365–374

    Article  Google Scholar 

  118. Luna MAG, Wada VI, Sánchez NE (2010) Biology of Dineulophus phtorimaeae and field interaction with Pseudapanteles dignus (Hymenoptera: Braconidae), larval parasitoids of Tuta absoluta in tomato. Ann Entomol Soc Am 103:936–942

    Article  Google Scholar 

  119. Saleh MME (1992) Ecological studies on certain parasitoids of corn borers, Ph.D. Faculty of Agriculture, Ain Shams University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Elbehery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elbehery, H., Saleh, M., El-Wakeil, N. (2020). Propagation and Application of Larval Parasitoids. In: El-Wakeil, N., Saleh, M., Abu-hashim, M. (eds) Cottage Industry of Biocontrol Agents and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-33161-0_2

Download citation

Publish with us

Policies and ethics