Biocontrol Agents for Fungal Plant Diseases Management

  • Younes M. Rashad
  • Tarek A. A. MoussaEmail author


Plant fungal diseases are the most destructive diseases where the fungal pathogens attack many economic crops causing yield losses, which affect directly many countries’ economy. The great Irish Famine in 19th century was due to potato (a great portion of Irish diets) was attacked by an oomycete pathogen Phytophthora infestans causing late blight disease which destroyed the potato crop for several years (1845–1852). Since this date the plant fungal diseases have a great attention from the researchers. Control of fungal diseases using different fungicides has dangerous effects on human beings as well as animals by precipitating in the plant tissues and then transfer to human and animals causing many health complications. Hence, the biological control of plant pathogenic fungi became the most important issue, due to the chemical risk to control the fungal diseases. From 1990’s the importance of using microorganisms was increased as biocontrol agents to decrease the chemical uses and their hazardous for human and animal health topics. In this chapter, using of different microorganism as biological control agents of plant fungal diseases were reviewed, as well as using chemicals in controlling fungal diseases and their effects on plants, environment and common health impacts.


Fungal pathogens Biological control Chemical control Biocontrol agents 


  1. 1.
    Hawksworth L (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  2. 2.
    US EPA (2005) Human health risk assessment protocol for hazardous waste combustion facilities. EPA530-R-05-006Google Scholar
  3. 3.
    Gonzalez-Fernández R, Prats E, Jorrín-Novo JV (2010) Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010:932527CrossRefGoogle Scholar
  4. 4.
    Vadlapudi V, Naidu KC (2011) Fungal pathogenicity of plants: molecular approach. Eur J Exp Bio 1:38–42Google Scholar
  5. 5.
    Crous PW, Hawksworth DL, Wingfield MJ (2015) Identifying and naming plant-pathogenic fungi: past, present, and future. Annu Rev Phytopathol 53:247–267CrossRefGoogle Scholar
  6. 6.
    Jibril SM, Jakada BH, Kutama AS, Umar HY (2016) Plant and pathogens: pathogen recognition, Invasion and plant defense mechanism. Int J Curr Microbiol App Sci 5:247–257CrossRefGoogle Scholar
  7. 7.
    El-Abyad MS, Abu-Taleb AM, Abdel-Mawgoud T (1996) Effect of the herbicide pyradur on host cell wall-degradation by the sugarbeet pathogens Rhizoctonia solani Kühn and Sclerotium rolfsii Sacc. Can J Bot 74:1407–1415CrossRefGoogle Scholar
  8. 8.
    El-Abyad MS, Abu-Taleb AM, Abdel-Mawgoud T (1997) Response of host cultivar to cell wall-degrading enzymes of the sugarbeet pathogens Rhizoctonia solani Kühn and Sclerotium rolfsii Sacc. under salinity stress. Microbiol Res 152:9–17CrossRefGoogle Scholar
  9. 9.
    Moussa TAA, Tharwat NA (2007) Optimization of cellulase and β-glucosidase induction by sugarbeet pathogen Sclerotium rolfsii. Afr J Biotechnol 6:1048–1054Google Scholar
  10. 10.
    Moussa TAA, Shanab SMM (2001) Impact of cyanobacterial toxicity stress on the growth activities of some phytopathogenic Fusarium spp. Az J Microbiol 53:267–282Google Scholar
  11. 11.
    Moussa TAA, Ali DMI (2008) Isolation and identification of novel disaccharide of α-L-Rhamnose from Penicillium chrysogenum. World Appl Sci J 3:476–486Google Scholar
  12. 12.
    Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE, Dandekar AM (2014) Advanced methods of plant disease detection. A Rev Agron Sustain Dev 35:1–25CrossRefGoogle Scholar
  13. 13.
    Shuping DSS, Eloff JN (2017) The use of plants to protect plants and food against fungal pathogens: a review. Afr J Tradit Complement Altern Med 14:120–127CrossRefGoogle Scholar
  14. 14.
    Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agro-nanotechnology for plant fungal disease management: a review. Int J Curr Microbiol App Sci 3:71–84Google Scholar
  15. 15.
    Al-Agamy MHM (2011) Tools of biological warfare. Res J Microbiol 6:193–245CrossRefGoogle Scholar
  16. 16.
    Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148CrossRefGoogle Scholar
  17. 17.
    Bale JS, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philos Trans R Soc Lond B Biol Sci 363(1492):761–776CrossRefGoogle Scholar
  18. 18.
    Gnanamanickam SS (2002) Biological control of crop diseases. Marcel Dekker Inc, New York, USACrossRefGoogle Scholar
  19. 19.
    Compant S, Duffy B, Nowak J et al (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959CrossRefGoogle Scholar
  20. 20.
    Hong CE, Park JM (2016) Endophytic bacteria as biocontrol agents against plant pathogens: current state-of-the-art. Plant Biotechnol Rep 10:353CrossRefGoogle Scholar
  21. 21.
    Carmona-Hernandez S, Reyes-Pérez JJ, Chiquito-Contreras RG et al (2019) Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: a review. Agronomy 9:121CrossRefGoogle Scholar
  22. 22.
    Parte AC (2018) LPSN—List of prokaryotic names with standing in nomenclature (, 20 years on. Int J Syst Evol Microbiol 68:1825–1829CrossRefGoogle Scholar
  23. 23.
    Connor N, Sikorski J, Rooney AP et al (2010) Ecology of speciation in the genus Bacillus. Appl Environ Microbiol 76:1349–1358CrossRefGoogle Scholar
  24. 24.
    Todar K (2012) Bacterial resistance to antibiotics. The microbial world. Lectures in microbiology, University of Wisconsin-MadisonGoogle Scholar
  25. 25.
    Fira D, Dimkić I, Berić T et al (2018) Biological control of plant pathogens by Bacillus species. J Biotechnol 285:44–55CrossRefGoogle Scholar
  26. 26.
    Tojo S, Tanaka Y, Ochi K (2015) Activation of antibiotic production in bacillus spp. by cumulative drug resistance mutations. Antimicrob Agents Chemother 59(12):7799–7804CrossRefGoogle Scholar
  27. 27.
    Halami PM (2019) Sublichenin, a new subtilin-like lantibiotics of probiotic bacterium Bacillus licheniformis MCC 2512T with antibacterial activity. Microb Pathog 128:139–146CrossRefGoogle Scholar
  28. 28.
    Saber WIA, Ghoneem KM, Al-Askar AA et al (2015) Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato. Acta Biol Hung 66(4):436–448CrossRefGoogle Scholar
  29. 29.
    Contesini FJ, Melo RR, Sato HH (2018) An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol 38(3):321–334CrossRefGoogle Scholar
  30. 30.
    Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Fertil Pestic 6:e129CrossRefGoogle Scholar
  31. 31.
    Dimkić I, Živković S, Berić T et al (2013) Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. Biol Control 65(3):312–321CrossRefGoogle Scholar
  32. 32.
    Guo Q, Dong W, Li S et al (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169(7):533–540CrossRefGoogle Scholar
  33. 33.
    Zhang X, Zhou Y, Li Y et al (2017) Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Prot 96:173–179CrossRefGoogle Scholar
  34. 34.
    Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31(3):446–459CrossRefGoogle Scholar
  35. 35.
    Chen L, Heng J, Qin S et al (2018) A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS ONE 13(6):e0198560CrossRefGoogle Scholar
  36. 36.
    Tchagang CF, Xu R, Overy D et al (2018) Diversity of bacteria associated with corn roots inoculated with Canadian woodland soils, and description of Pseudomonas aylmerense sp. nov. Heliyon 4(8):e00761Google Scholar
  37. 37.
    Gomila M, Peña A, Mulet M et al (2015) Phylogenomics and systematics in Pseudomonas. Front Microbiol 18(6):214Google Scholar
  38. 38.
    Bosire EM, Rosenbaum MA (2017) Electrochemical potential influences phenazine production, electron transfer and consequently electric current generation by Pseudomonas aeruginosa. Front Microbiol 8:892CrossRefGoogle Scholar
  39. 39.
    Pieterse CMJ, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Ann Rev Phytopathol 52:347–375CrossRefGoogle Scholar
  40. 40.
    Kumar P, Dubey RC, Maheshwari DK et al (2016) Isolation of plant growth-promoting Pseudomonas sp. PPR8 from the rhizosphere of Phaseolus vulgaris L. Arch Biol Sci 68(2):363–374CrossRefGoogle Scholar
  41. 41.
    Panpatte DG, Jhala YK, Shelat HN et al (2016) Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New DelhiGoogle Scholar
  42. 42.
    Aielloa D, Restucciaa C, Stefani E et al (2019) Postharvest biocontrol ability of Pseudomonas synxantha against Monilinia fructicola and Monilinia fructigena on stone fruit. Postharvest Biol Tech 149:83–89CrossRefGoogle Scholar
  43. 43.
    Chater KF (2016) Recent advances in understanding Streptomyces. F1000Res 5:2795Google Scholar
  44. 44.
    Santhanam R, Okoro CK, Rong X et al (2012) Streptomyces deserti sp. nov., isolated from hyper-arid Atacama Desert soil. Antonie Van Leeuwenhoek 101(3):575–581Google Scholar
  45. 45.
    Zhang L, Ruan C, Peng F et al (2016) Streptomyces arcticus sp. nov., isolated from frozen soil. Int J Syst Evol Microbiol 66(3):1482–1487Google Scholar
  46. 46.
    Al-Askar AA, Rashad YM, Hafez EE et al (2015) Characterization of Alkaline protease produced by Streptomyces griseorubens E44G and its possibility for controlling Rhizoctonia root rot disease of corn. Biotechnol Biotechnol Equip 29(3):457–462CrossRefGoogle Scholar
  47. 47.
    Le Roes-Hill M, Prins A, Meyers PR (2018) Streptomyces swartbergensis sp. nov., a novel tyrosinase and antibiotic producing actinobacterium. Antonie Van Leeuwenhoek 111(4):589–600Google Scholar
  48. 48.
    Romero-Rodríguez A, Maldonado-Carmona N, Ruiz-Villafán B et al (2018) Interplay between carbon, nitrogen and phosphate utilization in the control of secondary metabolite production in Streptomyces. Antonie Van Leeuwenhoek 111:761–781CrossRefGoogle Scholar
  49. 49.
    Barreiro C, Martínez-Castro M (2019) Regulation of the phosphate metabolism in Streptomyces genus: impact on the secondary metabolitesGoogle Scholar
  50. 50.
    Gebhardt K, Meyer SW, Schinko J et al (2011) Phenalinolactones A-D, terpenoglycoside antibiotics from Streptomyces sp. Tü 6071. J Antibiot (Tokyo) 64:229–232CrossRefGoogle Scholar
  51. 51.
    Helaly SE, Goodfellow M, Zinecker H et al (2013) Warkmycin, a novel angucycline antibiotic produced by Streptomyces sp. Acta 2930*. J Antibiot (Tokyo) 66(11):669–674Google Scholar
  52. 52.
    Rashad YM, Al-Askar AA, Ghoneem KM et al (2017) Chitinolytic Streptomyces griseorubens E44G enhances the biocontrol efficacy against Fusarium wilt disease of tomato. Phytoparasitica 45(2):227–237CrossRefGoogle Scholar
  53. 53.
    Hafez EE, Rashad YM, Abdulkhair WM et al (2019) Improving the chitinolytic activity of Streptomyces griseorubens E44G by mutagenesis. J Microbiol Biotechnol Food Sci 8(5):1156–1160CrossRefGoogle Scholar
  54. 54.
    Ara I, Bukhari NA, Aref N et al (2014) Antiviral activities of streptomycetes against tobacco mosaic virus (TMV) in Datura plant: evaluation of different organic compounds in their metabolites. Afr J Biotechnol 11:2130–2138Google Scholar
  55. 55.
    Wang SM, Liang Y, Shen T et al (2016) Biological characteristics of Streptomyces albospinus CT205 and its biocontrol potential against cucumber Fusarium wilt. Biocontrol Sci Techn 26(7):951–963CrossRefGoogle Scholar
  56. 56.
    Jung SJ, Kim NK, Lee DH et al (2018) Screening and evaluation of Streptomyces species as a potential biocontrol agent against a wood decay fungus. Gloeophyllum Trabeum Mycobiol 46(2):138–146CrossRefGoogle Scholar
  57. 57.
    Gowdar SB, Deepa H, Amaresh YS (2018) A brief review on biocontrol potential and PGPR traits of Streptomyces sp. for the management of plant diseases. J Pharmacogn Phytochem 7(5):03–07Google Scholar
  58. 58.
    Al-Askar AA, Abdulkhair WM, Rashad YM (2011) In vitro antifungal activity of Streptomyces spororaveus RDS28 against some phytopathogenic fungi. Afr J Agric Res 6(12):2835–2842Google Scholar
  59. 59.
    Al-Askar AA, Abdulkhair WM, Rashad YM et al (2014a) Streptomyces griseorubens E44G: a potent antagonist isolated from soil in Saudi Arabia. J Pure Appl Microbiol 8:221–230Google Scholar
  60. 60.
    Law JW, Ser HL, Khan TM et al (2017) The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaportheoryzae (Pyricularia oryzae). Front Microbiol 8:3Google Scholar
  61. 61.
    Bubici G (2018) Streptomyces spp. as biocontrol agents against Fusarium species. CAB Rev 13,50Google Scholar
  62. 62.
    Goudjal Y, Zamoum M, Sabaou N et al (2016) Potential of endophytic streptomyces spp. for biocontrol of fusarium root rot disease and growth promotion of tomato seedlings. Biocontrol Sci Technol 26(12):1691–1705Google Scholar
  63. 63.
    Al-Askar AA, Baka ZA, Rashad YM et al (2015) Evaluation of Streptomyces griseorubens E44G for the biocontrol of Fusarium oxysporum f. sp. lycopersici: ultrastructural and cytochemical investigations. Ann Microbiol 65:1815–1824CrossRefGoogle Scholar
  64. 64.
    Moussa TAA, Rizk MA (2002) Biocontrol of sugarbeet pathogen Fusarium solani (Mart.) Sacc. by Streptomyces aureofaciens. Pak J Biol Sci 5:556–559CrossRefGoogle Scholar
  65. 65.
    Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: from saprophytes to endosymbionts. Nat Rev Microbiol 16(5):291–303CrossRefGoogle Scholar
  66. 66.
    Al-Ani RA, Adhab MA, Mahdi MH et al (2012) Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Protect Sci 48:149–155CrossRefGoogle Scholar
  67. 67.
    Tamiru G, Muleta D (2018) The effect of rhizobia isolates against black root rot disease of Faba Bean (Vicia faba L) caused by Fusarium solani. Open Agr J 12:131–147CrossRefGoogle Scholar
  68. 68.
    Jacka CN, Wozniaka KJ, Porter SS et al (2019) Rhizobia protect their legume hosts against soil-borne microbial antagonists in a host-genotype-dependent manner. Rhizosphere 9:47–55CrossRefGoogle Scholar
  69. 69.
    Das K, Prasanna R, Saxena AK (2017) Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol 62(5):425–435CrossRefGoogle Scholar
  70. 70.
    Volpiano CG, Lisboa BB, São José JFB et al (2018) Rhizobium strains in the biological control of the phytopathogenic fungi Sclerotium (Athelia) rolfsii on the common bean. Plant Soil 432:229–243CrossRefGoogle Scholar
  71. 71.
    Hemissi I, Mabrouk Y, Abdi N et al (2011) Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. Afr J Microbiol Res 5(24):4080–4090Google Scholar
  72. 72.
    Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20CrossRefGoogle Scholar
  73. 73.
    Katiyar D, Hemantaranjan A, Singh B (2016) Plant growth promoting Rhizobacteria-an efficient tool for agriculture promotion. Adv Plants Agric Res 4(6):426–434Google Scholar
  74. 74.
    Elshafie HS, Camele I, Ventrella E et al (2013) Use of plant growth promoting bacteria (PGPB) for promoting tomato growth and its evaluation as biological control agent. Int J Microbiol Res 5:452–457CrossRefGoogle Scholar
  75. 75.
    Simonetti E, Roberts IN, Montecchia MS et al (2018) A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth. Microbiol Res 206:50–59CrossRefGoogle Scholar
  76. 76.
    Toyoda H, Katsuragi KT, Tamai T et al (1991) DNA sequence of genes for detoxification of fusaric acid, a wilt-inducing agent produced by Fusarium species. J Phytopathol 133:265–277CrossRefGoogle Scholar
  77. 77.
    Elshafie HS, Sakr S, Bufo SA et al (2017) An attempt of biocontrol the tomato-wilt disease caused by Verticillium dahliae using Burkholderia gladioli pv. agaricicola and its bioactive secondary metabolites. Int J Plant Biol 8(1):57–60Google Scholar
  78. 78.
    Bevardi M, Frece J, Mesarek D et al (2013) Antifungal and antipatulin activity of Gluconobacter oxydans isolated from apple surface. Arh Hig Rada Toksikol 64(2):279–284CrossRefGoogle Scholar
  79. 79.
    Hassouna MG, El-Saedy MA, Saleh HM (1998) Biocontrol of soil-borne plant pathogens attacking cucumber (Cucumis sativus) by Rhizobacteria in a semiarid environment. Arid Land Res Manage 12(4):345–357Google Scholar
  80. 80.
    Al-Askar AA, Ghoneem KM, Rashad YM (2012) Seed-borne mycoflora of alfalfa (Medicago sativa L.) in the Riyadh Region of Saudi Arabia. Ann Microbiol 62(1):273–281Google Scholar
  81. 81.
    Al-Askar AA, Ghoneem KM, Rashad YM et al (2014) Occurrence and distribution of tomato seed-borne mycoflora in Saudi Arabia and its correlation with the climatic variables. Microb Biotechnol 7(6):556–569CrossRefGoogle Scholar
  82. 82.
    Jaklitsch WM, Voglmayr H (2015) Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud Mycol 80:1–87CrossRefGoogle Scholar
  83. 83.
    Samuels GJ (2006) Trichoderma: systematics, the sexual state, and ecology. Phytopathol 96(2):195–206CrossRefGoogle Scholar
  84. 84.
    Goh J, Nam B, Lee JS et al (2018) First report of six Trichoderma species isolated from freshwater environment in Korea. Korean J Mycol 46(3):213–225Google Scholar
  85. 85.
    Bissett J, Gams W, Jaklitsch W et al (2015) Accepted Trichoderma names in the year 2015. IMA Fungus 6(2):263–295CrossRefGoogle Scholar
  86. 86.
    Qin WT, Zhuang WY (2016) Two new hyaline-ascospored species of Trichoderma and their phylogenetic positions. Mycologia 108:205–214CrossRefGoogle Scholar
  87. 87.
    Qin WT, Zhuang WY (2016) Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Sci Rep 6:27074CrossRefGoogle Scholar
  88. 88.
    Qin WT, Zhuang WY (2016) Four new species of Trichoderma with hyaline ascospores from central China. Mycol Prog 15:811–825CrossRefGoogle Scholar
  89. 89.
    Qin WT, Zhuang WY (2017) Seven new species of Trichoderma (Hypocreales) in the Harzianum and Strictipile clades. Phytotaxa 305:121–139CrossRefGoogle Scholar
  90. 90.
    Chen K, Zhuang WY (2017) Discovery from a large-scaled survey of Trichoderma in soil of China. Sci Rep 7(1):9090CrossRefGoogle Scholar
  91. 91.
    Chen K, Zhuang WY (2017) Seven soil-inhabiting new species of the genus Trichoderma in the Viride clade. Phytotaxa 312:28–46CrossRefGoogle Scholar
  92. 92.
    Zhang YB, Zhuang WY (2017) Four new species of Trichoderma with hyaline ascospores from southwest China. Mycosphere 8(10):1914–1929CrossRefGoogle Scholar
  93. 93.
    Zhang YB, Zhuang WY (2018) New species of Trichoderma in the Harzianum, Longibrachiatum and Viride clades. Phytotaxa 379(2):131–142CrossRefGoogle Scholar
  94. 94.
    Abdel-Fattah GM, Shabana YM, Ismail AE et al (2007) Trichoderma harzianum: a biocontrol agent against Bipolaris oryzae. Mycopathologia 164(2):81–89CrossRefGoogle Scholar
  95. 95.
    Malmierca MG, Cardoza RE, Alexander NJ et al (2012) Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl Environ Microbiol 78:4856–4868CrossRefGoogle Scholar
  96. 96.
    Ganuza M, Pastor N, Boccolini M et al (2018) Evaluating the impact of the biocontrol agent Trichoderma harzianum ITEM 3636 on indigenous microbial communities from field soils. J Appl Microbiol 126:608–623CrossRefGoogle Scholar
  97. 97.
    El-Sharkawy HH, Rashad YM, Ibrahim SA (2018) Biocontrol of stem rust disease of wheat using arbuscular mycorrhizal fungi and Trichoderma spp. Physiol Mol Plant Pathol 103:84–91CrossRefGoogle Scholar
  98. 98.
    Saber WIA, Ghoneem KM, Rashad YM et al (2017) Trichoderma harzianum WKY1: an indole acetic acid producer for growth improvement and anthracnose disease control in sorghum. Biocontrol Sci Technol 27(5):654–676CrossRefGoogle Scholar
  99. 99.
    Srivastava M, Pandey S, Shahid M et al (2015) Biocontrol mechanisms evolved by Trichoderma sp. against phytopathogens: a review. Bioscan 10:1713–1719Google Scholar
  100. 100.
    Strakowska J, Blaszczyk L, Chelkowski J (2014) The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J Basic Microbiol 54:S2–S13CrossRefGoogle Scholar
  101. 101.
    Gajera HP, Bambharolia RP, Patel SV et al (2012) Antagonism of Trichoderma spp. against Macrophomina phaseolina: evaluation of coiling and cell wall degrading enzymatic activities. Plant Pathol Microbiol 3:2157–7471Google Scholar
  102. 102.
    Vinale F, Sivasithamparam K, Ghisalberti EL et al (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127–139CrossRefGoogle Scholar
  103. 103.
    Ojha S, Chatterjee NC (2011) Mycoparasitism of Trichoderma spp. in biocontrol of fusarial wilt of tomato. Arch Phytopathol Plant Protect 44(8): 771–782Google Scholar
  104. 104.
    Qualhato TF, Lopes FA, Steindorff AS et al (2013) Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol Lett 35(9):1461–1468CrossRefGoogle Scholar
  105. 105.
    Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L et al (2017) Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genetics 18:16Google Scholar
  106. 106.
    Omann MR, Lehner S, Escobar Rodríguez C et al (2012) The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiol 158(Pt 1):107–118CrossRefGoogle Scholar
  107. 107.
    Mukherjee M, Mukherjee PK, Horwitz BA et al (2012) Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52(4):522–529CrossRefGoogle Scholar
  108. 108.
    Taribuka J, Wibowo A, Widyastuti SM et al (2017) Potency of six isolates of biocontrol agents endophytic Trichoderma against fusarium wilt on banana. J Degrade Min Land Manage 4(2):723–731CrossRefGoogle Scholar
  109. 109.
    Park Y-H, Kim Y, Mishra RC et al (2017) Fungal endophytes inhabiting mountain-cultivated ginseng (Panax ginseng Meyer): diversity and biocontrol activity against ginseng pathogens. Sci Rep 7:16221CrossRefGoogle Scholar
  110. 110.
    Park Y-H, Mishra RC, Yoon S et al (2019) Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J Ginseng Res. (in press)
  111. 111.
    Chen J-L, Sun S-Z, Miao C-P et al (2016) Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J Ginseng Res 40(4):315–324CrossRefGoogle Scholar
  112. 112.
    Ek-Ramos MJ, Zhou W, Valencia CU et al (2013) Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum). PLoS ONE 8:1–13CrossRefGoogle Scholar
  113. 113.
    Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ et al (2013) Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206CrossRefGoogle Scholar
  114. 114.
    Kim JY, Yun YH, Hyun MW (2010) Identification and characterization of gliocladium viride isolated from mushroom fly infested oak log beds used for shiitake cultivation. Mycobiology 38(1):7–12CrossRefGoogle Scholar
  115. 115.
    Nur A, Salam M, Junaid M et al (2014) Isolation and identification of endophytic fungi from cocoa plant resistante VSD M.05 and cocoa plant suscebtible VSD M.01 in South Sulawesi, Indonesia. Int J Curr Microbiol App Sci 3(2):459–467Google Scholar
  116. 116.
    Sutton JC, Li D-W, Peng G et al (1997) Gliocladium roseum: a versatile adversary of Botrytis cinerea in crops. Plant Dis 81(4):316–328CrossRefGoogle Scholar
  117. 117.
    Strobel GA, Knighton B, Kluck K et al (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328CrossRefGoogle Scholar
  118. 118.
    Song HC, Shen WY, Dong JY (2016) Nematicidal metabolites from Gliocladium roseum YMF1.00133. Appl Biochem Microbiol 52:324–330CrossRefGoogle Scholar
  119. 119.
    Zhai MM, Qi FM, Li J et al (2016) Isolation of secondary metabolites from the soil-derived fungus Clonostachys rosea YRS-06, a biological control agent, and evaluation of antibacterial activity. J Agric Food Chem 64:2298–2306CrossRefGoogle Scholar
  120. 120.
    Rybczyńska-Tkaczyk K, Korniłłowicz-Kowalska T (2018) Activities of versatile peroxidase in cultures of Clonostachys rosea f. catenulata and Clonostachys rosea f. rosea during biotransformation of alkali lignin. J AOAC Int 101(5):1415–1421Google Scholar
  121. 121.
    Schroers HJ (2001) A monograph of bionectria (ascomycota, hypocreales, bionectriaceae) and its clonostachys anamorphs. Stud Mycol 46:1–214Google Scholar
  122. 122.
    Schroers HJ, Samuels GJ, Seifert KA et al (1999) Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia 91(2):365–385Google Scholar
  123. 123.
    Jabnoun-Khiareddine H, Daami-Remadi M, Ayed F et al (2009) Biocontrol of tomato verticillium wilt by using indigenous Gliocladium spp. and Penicillium sp. isolates. Dyn Soil Dyn Plant 3(1):70–79Google Scholar
  124. 124.
    Agarwal T, Malhotra A, Trivedi PC et al (2011) Biocontrol potential of Gliocladium virens against fungal pathogens isolated from chickpea, lentil and black gram seeds. J Agric Technol 7(6):1833–1839Google Scholar
  125. 125.
    Hassine M, Jabnoun-Khiareddine H, Aydi Ben Abdallah R et al (2017) In vitro and in vivo antifungal activity of culture filtrates and organic extracts of Penicillium sp. and Gliocladium spp. against Botrytis cinerea. J Plant Pathol Microbiol 8(12):427Google Scholar
  126. 126.
    Borges ÁV, Saraiva RM, Maffia LA (2015) Biocontrol of gray mold in tomato plants by Clonostachys rosea. Trop plant pathol 40(2):71–76CrossRefGoogle Scholar
  127. 127.
    Tesfagiorgis HB, Laing MD, Annegarn HJ (2014) Evaluation of biocontrol agents and potassium silicate for the management of powdery mildew of zucchini. Biol Control 73:8–15CrossRefGoogle Scholar
  128. 128.
    Ayent AG, Hanson JR, Truneh A (1992) Metabolites of Gliocladium flavofuscum. Phytochemistry 32(1):197–198CrossRefGoogle Scholar
  129. 129.
    Howell CR (2006) Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology 96(2):178–180CrossRefGoogle Scholar
  130. 130.
    Anitha R, Murugesan K (2005) Production of gliotoxin on natural substrates by Trichoderma virens. J Basic Microbiol 45(1):12–19CrossRefGoogle Scholar
  131. 131.
    Stinson M, Ezra D, Hess WM, Sears J, Strobel G (2003) An endophytic Gliocladium sp. of Eucryphiacordifolia producing selective volatile antimicrobial compounds. Plant Science 165(4):913–922Google Scholar
  132. 132.
    Sun ZB, Li SD, Zhong ZM et al (2015) A perilipin gene from Clonostachys rosea f. catenulata HL-1-1 is related to sclerotial parasitism. Int J Mol Sci 16:5347–5362CrossRefGoogle Scholar
  133. 133.
    Sun ZB, Sun MH, Li SD (2015) Identification of mycoparasitism-related genes in Clonostachys rosea 67-1 active against Sclerotinia sclerotiorum. Sci Rep 5:18169CrossRefGoogle Scholar
  134. 134.
    Tsapikounis FA (2015) An integrated evaluation of mycoparasites from organic culture soils as biological control agents of sclerotia of Sclerotinia sclerotiorum in the laboratory. BAOJ Microbio 1(1):001Google Scholar
  135. 135.
    Yin G, Zhang Y, Pennerman KK et al (2017) Characterization of blue mold Penicillium species isolated from stored fruits using multiple highly conserved loci. J Fungi (Basel) 3(1):E12CrossRefGoogle Scholar
  136. 136.
    Kozlovsky AG, Zhelifonova VP, Antipova TV (2013) Biologically active metabolites of Penicillium fungi. J Org Biomol Chem 1:11–21Google Scholar
  137. 137.
    Mamat S, Md Shah UK, Remli NAM et al (2018) Characterization of antifungal activity of endophytic Penicillium oxalicum T 3.3 for anthracnose biocontrol in dragon fruit (Hylocereus sp). Int J Agric Environ Res 4(1):65–76Google Scholar
  138. 138.
    Sreevidya M, Gopalakrishnan S, Melø TM (2015) Biological control of Botrytis cinerea and plant growth-promotion potential by Penicillium citrinum in chickpea (Cicer arietinum L.) Biocont Sci Technol 25:739–755Google Scholar
  139. 139.
    Sreevidya M, Gopalakrishnan S (2016) Penicillium citrinum VFI-51 as bio agent to control charcoal rot of sorghum (Sorghum bicolor (L.) Moench). Afr J Microbiol Res 10(19):669–674Google Scholar
  140. 140.
    De Cal A, Redondo C, Sztejnberg A et al (2008) Biocontrol of powdery mildew by Penicillium oxalicum in open-field nurseries of strawberries. Biol Control 47(1):103–107CrossRefGoogle Scholar
  141. 141.
    Doveri F (2013) An additional update on the genus Chaetomium with descriptions of two coprophilous species, new to Italy. Mycosphere 4:820–846CrossRefGoogle Scholar
  142. 142.
    Zhao SS, Zhang YY, Yan W et al (2017) Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiol Lett 364(3):fnw287Google Scholar
  143. 143.
    Hung PM, Wattanachai P, Kasem S et al (2015) Efficacy of Chaetomium species as biological control agents against Phytophthora nicotianae root rot in citrus. Mycobiology 43(3):288–296CrossRefGoogle Scholar
  144. 144.
    Abdel-Azeem AM, Gherbawy YA, Sabry AM (2016) Enzyme profiles and genotyping of Chaetomium globosum isolates from various substrates. Plant Biosyst 150(3):420–428CrossRefGoogle Scholar
  145. 145.
    Wanmolee W, Sornlake W, Rattanaphan N et al (2016) Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification. BMC Biotechnol 16(1):82CrossRefGoogle Scholar
  146. 146.
    Xue M, Zhang Q, Gao JM et al (2012) Chaetoglobosin Vb from endophytic Chaetomium globosum: absolute configuration of chaetoglobosins. Chirality 24:668–674CrossRefGoogle Scholar
  147. 147.
    Ye Y, Xiao Y, Ma L et al (2013) Flavipin in Chaetomium globosum CDW7, an endophytic fungus from Ginkgo biloba, contributes to antioxidant activity. Appl Microbiol Biotechnol 97:7131–7139CrossRefGoogle Scholar
  148. 148.
    Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of hyphomycetes. CBS biodiversity series no. 9:1–997. CBS-KNAW Fungal Biodiversity Centre, Utrecht, NetherlandsGoogle Scholar
  149. 149.
    Ruma K, Sunil K, Prakash HS (2014) Bioactive potential of endophytic Myrothecium sp. isolate M1-CA-102, associated with Calophyllum apetalum. Pharm Biol 52(6):665–676Google Scholar
  150. 150.
    Nguyen LTT, Jang JY, Kim TY et al (2018) Nematicidal activity of verrucarin A and roridin A isolated from Myrothecium verrucaria against Meloidogyne incognita. Pestic Biochem Physiol 148:133–143CrossRefGoogle Scholar
  151. 151.
    Chavan SB, Vidhate RP, Kallure GS et al (2017) Stability studies of cuticle degrading and mycolytic enzymes of Myrothecium verrucaria for control of insect pests and fungal phytopathogens. Indian J Biotechnol 16:404–412Google Scholar
  152. 152.
    Lamovšek J, Urek G, Trdan S (2013) Biological control of root-knot nematodes (Meloidogyne spp.): microbes against the pests. Acta Agric Slov 101(2):263–275Google Scholar
  153. 153.
    Chen Y, Ran SF, Dai DQ et al (2016) Mycosphere essays 2. Myrothecium. Mycosphere 7(1):64–80CrossRefGoogle Scholar
  154. 154.
    Barros DCM, Fonseca ICB, Balbi-Peña MIP et al (2015) Biocontrol of Sclerotinia sclerotiorum and white mold of soybean using saprobic fungi from semi-arid areas of Northeastern Brazil. Summa Phytopathologica 41(4):251–255CrossRefGoogle Scholar
  155. 155.
    Brewer MT, Larkin RP (2005) Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Prot 24:939–950CrossRefGoogle Scholar
  156. 156.
    Krishnamoorthy AS, Bhaskaran R (1990) Biological control of damping-off disease of tomato caused by Pythium indicum Balakrishnan. J Biol Control 4(1):52–54Google Scholar
  157. 157.
    Bobba V, Conway KE (2003) Competitive saprophytic ability of Laetisaria arvalis compared with Sclerotium rolfsii. Proc Okla Acad Sci 83:17–22Google Scholar
  158. 158.
    Whipps JM, Sreenivasaprasad S, Muthumeenakshi S et al (2008) Use of Coniothyrium minitans as a biological control agent and some molecular aspect of sclerotial mycoparasitism. Eur J Plant Pathol 121:323–330CrossRefGoogle Scholar
  159. 159.
    Zeng W, Wang D, Kirk W et al (2012) Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biol Control 60(2):225–232CrossRefGoogle Scholar
  160. 160.
    Chitrampalam P, Wu BM, Koike ST et al (2011) Interactions between Coniothyrium minitans and Sclerotinia minor affect biocontrol efficacy of C. minitans. Phytopathology 101:358–366CrossRefGoogle Scholar
  161. 161.
    Giczey G, Kerenyi Z, Fulop L et al (2001) Expression of cmg1, and exo-beta-1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Appl Environ Microbiol 67:865–871CrossRefGoogle Scholar
  162. 162.
    Tomprefa N, Hill R, Whipps J et al (2011) Some environmental factors affect growth and antibiotic production by the mycoparasite Coniothyrium minitans. Biocontrol Sci Techn 21:721–731CrossRefGoogle Scholar
  163. 163.
    Goto BT, Silva GA, Assis D et al (2012) Intraornatosporaceae (Gigasporales), a new family with two new genera and two new species. Mycotaxon 119(1):117–132CrossRefGoogle Scholar
  164. 164.
    Spatafora JW, Chang Y, Benny GL et al (2016) A phylumlevel phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046CrossRefGoogle Scholar
  165. 165.
    Kehri HK, Akhtar O, Zoomi I et al (2018) Arbuscular mycorrhizal fungi: taxonomy and its systematics. Int J Life Sci Res 6(4):58–71Google Scholar
  166. 166.
    Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77CrossRefGoogle Scholar
  167. 167.
    Chen M, Arato M, Borghi L et al (2018) Beneficial services of arbuscular mycorrhizal fungi—from ecology to application. Front Plant Sci 9:1270CrossRefGoogle Scholar
  168. 168.
    Al-Askar AA, Rashad YM (2010) Arbuscular mycorrhizal fungi: a biocontrol agent against common bean Fusarium root rot disease. Plant Pathol J 9(1):31–38CrossRefGoogle Scholar
  169. 169.
    Olawuyi OJ, Odebode AC, Oyewole IO et al (2014) Effect of arbuscular mycorrhizal fungi on Pythium aphanidermatum causing foot rot disease on pawpaw (Carica papaya L.) seedlings. Arch Phytopathol Plant Prot 47(2):185–193Google Scholar
  170. 170.
    Spagnoletti FN, Leiva M, Chiocchio V et al (2018) Phosphorus fertilization reduces the severity of charcoal rot (Macrophomina phaseolina) and the arbuscular mycorrhizal protection in soybean. J Plant Nutr Soil Sci 181(6):855–860CrossRefGoogle Scholar
  171. 171.
    Zhang Q, Gao X, Ren Y et al (2018) Improvement of verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. Int J Mol Sci 19(1):241CrossRefGoogle Scholar
  172. 172.
    Mohamed I, Eid KE, Abbas MHH et al (2019) Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicol Environ Saf 171:539–548CrossRefGoogle Scholar
  173. 173.
    Olowe OM, Olawuyi OJ, Sobowale AA et al (2018) Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea maysL. (Maize). Curr Plant Biol 15:30–37CrossRefGoogle Scholar
  174. 174.
    Vierheilig H et al (2008) the biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? In: Varma A (ed) Mycorrhiza. Springer, Berlin, HeidelbergGoogle Scholar
  175. 175.
    Vos CM, Yang Y, De Coninck B et al (2014) Fungal (-like) biocontrol organisms in tomato disease control. Biol Control 74:65–81CrossRefGoogle Scholar
  176. 176.
    Abdel-Fattah GM, El-Haddad SA, Hafez EE et al (2011) Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiol Res 166(4):268–281CrossRefGoogle Scholar
  177. 177.
    Hafez EE, Abdel-Fattah GM, El-Haddad SA et al (2013) Molecular defense response of mycorrhizal bean plants infected with Rhizoctonia solani. Ann Microbiol 63(3):1195–1203CrossRefGoogle Scholar
  178. 178.
    Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 24;124(4):803–14Google Scholar
  179. 179.
    Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329CrossRefGoogle Scholar
  180. 180.
    Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411(6839):826–833CrossRefGoogle Scholar
  181. 181.
    Altenbach D, Robatzek S (2007) Pattern recognition receptors: from the cell surface to intracellular dynamics. Mol Plant Microbe Interact 20(9):1031–1039CrossRefGoogle Scholar
  182. 182.
    Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11(4):389–395CrossRefGoogle Scholar
  183. 183.
    Niu D, Xia J, Jiang C, Qi B, Ling X, Lin S, Zhang W, Guo J, Jin H, Zhao H (2016) Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis. J Integr Plant Biol 58(4):426–439CrossRefGoogle Scholar
  184. 184.
    Speth C, Willing E-M, Rausch S, Schneeberger K, Laubinger S (2013) RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. The plant J 76(3):433–445CrossRefGoogle Scholar
  185. 185.
    Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246CrossRefGoogle Scholar
  186. 186.
    Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342(6154):118–123CrossRefGoogle Scholar
  187. 187.
    Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215CrossRefGoogle Scholar
  188. 188.
    Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863CrossRefGoogle Scholar
  189. 189.
    Moussa TAA (1999) Towards the biological control of some root-rot fungal pathogens of sugarbeet in Egypt. Ph.D. Thesis, Cairo UniversityGoogle Scholar
  190. 190.
    Moussa TAA (2002) Studies on biological control of sugarbeet pathogen Rhizoctonia solani Kühn. J. Biol. Sci. 2:800–804CrossRefGoogle Scholar
  191. 191.
    Elazzazy AM, Almaghrabi OA, Moussa TAA, Abdel-Moneim TS (2012) Evaluation of some plant growth promoting rhizobacteria (PGPR) to control Pythiumaphanidermatum in cucumber plants. Life Sci. J. 9(4):3147–3153Google Scholar
  192. 192.
    Moussa TAA, Almaghrabi OA, Abdel-Moneim TS (2013) Biological control of the wheat root rot caused by Fusarium graminearum using some PGPR strains in Saudi Arabia. Ann Appl. Biol. 163:72–81CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research InstituteCity of Scientific Research and Technological ApplicationsAlexandriaEgypt
  2. 2.Botany and Microbiology Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations