Biological Control of Phyto-pathogenic Bacteria

  • Hassan Abd-El-KhairEmail author


The pathogenic bacteria can attack many plants causing different symptoms include necrosis, tissue maceration, wilting and hyperplasia and resulting diseases and damage to crops. The bacteria enter the host plant through natural openings or wounds and then it colonized locally intercellular spaces and systematically the vascular system of host. Virulence of bacterial pathogen was increased by increase of bacterial metabolites production viz. enzymes, toxins and/or plant hormones often under control of quorum sensing mechanisms. Application of effective chemicals or resistance sources against bacterial plant diseases are limited because of copper compounds may cause phytotoxic or rusting to plants as well as antibiotics application has not enough disease control. Therefore, the biological control can be successfully applied for crop protection against bacterial pathogens, where the biological control depended on the use of natural enemies viz. bacteria, fungi and viruses which they was common in any agricultural system.


Agricultural system Pathogenic bacteria Fungi Bacteria Biological control 


  1. 1.
    Gadoury DM, McHardy WE, Rosenberger DA (1989) Integration of pesticide application schedules for disease and insect control in apple orchards of the northern United States. Plant Dis 73:98–105Google Scholar
  2. 2.
    Agrios G (1997) Plant pathology, 4th edn. Academic Press, pp 1–635Google Scholar
  3. 3.
    Van der Zwet T, Beer SV (1995) Fire blight—its nature, prevention and control. A practical guide to integrated disease management. Agr Inf Bull 631:91Google Scholar
  4. 4.
    Jones AL, McManus PS, Chiou CS (1996) Epidemiology and genetic diversity of streptomycin resistance in E. amylovora in Michigan. Acta Hort 338:333–340Google Scholar
  5. 5.
    Vanneste JL (2000) Fire blight. The disease and causative agent, Erwinia amylovora. CABI Publications, pp. 1–370Google Scholar
  6. 6.
    Arwiyanto T (2014) Biological control of plant diseases caused by bacteria. J Perlindungan Tanaman Indonesia 18:1–12Google Scholar
  7. 7.
    Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635CrossRefGoogle Scholar
  8. 8.
    Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4-diacetyl-phloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554CrossRefGoogle Scholar
  9. 9.
    Abd El- Kahir H (2004) Efficacy of starner in controlling the bacterial soft rot pathogen in onion. Ann Agric Sci Ain Shams Univ Cairo 49:721–731Google Scholar
  10. 10.
    Abd El- Khair H (2004) Variation and control of Erwinia carotovora subsp. carotovora isolates the causal agent of potato soft rot disease. Ann Agric Sci Ain Shams Univ Cairo 49:377–388Google Scholar
  11. 11.
    Coplin DL, Rowan RG, Chisholm DA, Whitmoyer RE (1981) Characterization of plasmids in Erwinia stewartii. Appl. Env. Microbiol. 42:599–604Google Scholar
  12. 12.
    Schaad NW, Jones JB, Chun W (2001) Laboratory guide for identification of plant pathogenic bacteria, 3rd edn. The American Phytopathological Society Press, St. PaulGoogle Scholar
  13. 13.
    Lelliott RA, Stead D (1987) Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific Publications, Oxford, UK, pp 1–216Google Scholar
  14. 14.
    Vidaver AK, Lambrecht PA (2004) Bacteria as plant pathogens. The Plant Health Instructor. Scholar
  15. 15.
    Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25:671–673CrossRefGoogle Scholar
  16. 16.
    Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H et al (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi. Int J Sys Evol Microbiol 51:89–103Google Scholar
  17. 17.
    Pitzschke A, Hirt H (2010) New insights into an old story: Agrobacterium-induced tumor formation in plants by plant transformation. EMBO J 29:1021–1032CrossRefGoogle Scholar
  18. 18.
    Schell J, Van Montagu M (1977) The Ti-plasmid of Agrobacterium tumefaciens, a natural vector for the introduction of NIF genes in plants? Basic Life Sci 9:159–179Google Scholar
  19. 19.
    Goodner B, Hinkle G, Gattung S, Miller N et al (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294(5550):2323–2328CrossRefGoogle Scholar
  20. 20.
    Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68CrossRefGoogle Scholar
  21. 21.
    Samson R, Legendre JB, Christen R, Saux MFL, Achouak W, Gardan L (2005) Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol 55:1415–1427Google Scholar
  22. 22.
    Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I, Breuer J, Breuer J, Glasner JD, Perna NT, Kelman A, Charkowski AO (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathol 97:1150–11639CrossRefGoogle Scholar
  23. 23.
    ZhangY Fan Q, Loria R (2016) A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol 39:252–259CrossRefGoogle Scholar
  24. 24.
    Van der Zwet T, Keil HL (1979) Fire blight—a bacterial disease of Rosaceous plants. Agric handbook, vol 510. Department of Agriculture, Washington D.C, U.SGoogle Scholar
  25. 25.
    Abd El-Khair H, Seif El-Nasr HI (2002) Epidemiology and control of fire blight disease in pears. Arab Univ J Agric Sci, Ain Shams Univ, Cairo 10:1059–1069Google Scholar
  26. 26.
    Barakat FM, Seif El-Nasr HI, Mikhail MS, Abd El-Khair H (2002) Effect of some fungicides and bactericides on the growth Erwinia amylovora, the causal of fire blight of pear. In: The First conference of the Central Agric Pesticide Lab, vol 1, pp 328–337, 3–5 Sep 2002Google Scholar
  27. 27.
    Sands DC (1990) Physiological criteria-determinative tests. In: Klement Z, Rudolph K, Sands DC (eds) Methods in phyto-bacteriology. Akadémiai Kiadó, Budapest, pp 133–143Google Scholar
  28. 28.
    Abd El-Khair H, Barakat FM, Mikhail MS, Seif El-Nasr HI (2003) Differentiation between Egyptian isolates of Erwinia amylovora, based on cellular protein patterns. In: Proceedings of 10th Congress of Phytopathology, 9–10.12.2003, Giza, Egypt, pp 339–353Google Scholar
  29. 29.
    Haggag KHE, Abd El-Khair H (2006) Antibacterial activity of some Egyptian medicinal plants against Erwinia carotovora subsp. carotovora isolates in potato. Egypt J Appl Sci 21:428–441Google Scholar
  30. 30.
    Faquihi H, Mhand RA, Ennaji M, Benbouaza A, Achbani E (2014) Aureobasidium pullulans (De Bary) G. Arnaud, a biological control against soft rot disease in potato caused by Pectobacterium carotovorum. Int J Sci Res 3:1779–1786Google Scholar
  31. 31.
    Perombelon M, Kelman A (1980) Ecology of the soft rot erwinias. Annu Rev Phytopathol 18:361–387CrossRefGoogle Scholar
  32. 32.
    Perombelon MCM (2002) Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathol 51:1–12CrossRefGoogle Scholar
  33. 33.
    Toth Ian K, Bell Kenneth S, Holeva Maria C, Birch PRJ (2003) Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 4:17–30CrossRefGoogle Scholar
  34. 34.
    Arnold DL, Gibbon MJ, Jackson RW, Wood JR, Brown J, Mansfield JW et al (2001) Molecular characterization of avrPphD, a widely-distributed gene from Pseudomonas syringae pv. phaseolicola involved in non-host recognition by pea (Pisum sativum). Physiol Mol Plant Pathol 58:55–62CrossRefGoogle Scholar
  35. 35.
    Green S, Studholme DJ, Laue BJ, Dorati F, Lovell H, Arnold D, Cottrell JE, Bridgett S, Blaxter M, Huitema E, Thwaites R, Sharp PM, Jackson RW, Kamoun S (2010) Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS ONE, 5:e10224Google Scholar
  36. 36.
    Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, Zhou JM (2010) Receptor‐like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301CrossRefGoogle Scholar
  37. 37.
    Abd El-Khair H, Nofal MA (2001) Flowers bacterial soft rot of bird of paradise (Strelitzia reginae, Banks) in Egypt and its control. Arab Univ J Agric Sci, Ain Shams Univ, Cairo 9:397–410Google Scholar
  38. 38.
    Denny TP (2006) Plant-pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 573–644Google Scholar
  39. 39.
    Genin S (2010) Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol 187:920–928CrossRefGoogle Scholar
  40. 40.
    Abd El-Khair H, Seif El-Nasr HI (2012) Applications of Bacillus subtilis and Trichoderma spp. for controlling the potato brown rot in field. Arch Phytopathol Plant Prot 45:1–15CrossRefGoogle Scholar
  41. 41.
    Mew T, Alvarez A, Leach J, Swings J (1993) Focus on bacterial blight of rice. Plant Dis 77:5–12CrossRefGoogle Scholar
  42. 42.
    Verdier V, Vera Cruz C, Leach JE (2011) Controlling rice bacterial blight in Africa: Needs and prospects. J Biotechnol 159:320–328CrossRefGoogle Scholar
  43. 43.
    Ramanamma C, Santoshkumari M (2017) Biological control of blight of rice using RR8 rhizosphere bacteria. Int J Current Microbiol Appl Sci 5(Special Issue):124–128Google Scholar
  44. 44.
    Johnson BJ (1994) Biological control of annual bluegrass with Xanthomonas campestris pv. poannua in bermudagrass. Hort Sci 29:659–662CrossRefGoogle Scholar
  45. 45.
    Bora LC, Gangopadhyay S, Chand JN (1994) Biological control of bacterial leaf spot (Xanathomans campestris pv. vignaeradiatae Dye) of mung bean with phylloplane antagonists. AGRISsince 23:162–168Google Scholar
  46. 46.
    Jalali I, Parashar RD (1995) Biocontrol of Xanthomonas campestris pv. campestris in Brassica juncea with phylloplane antagonist. Plant Disease Res10:145–147Google Scholar
  47. 47.
    Vauterin L, Rademaker J, Swings J (2000) Synopsis on the taxonomy of the genus Xanthomonas. Phytopathology 7:677–682CrossRefGoogle Scholar
  48. 48.
    Babu AGC, Thind BS (2005) Potential use of combinations of Pantoea agglomerans, Pseudomonas fluorescens and Bacillus subtilis for the control of bacterial blight of rice. Ann the Sri Lanka Dept Agric 7:23–37Google Scholar
  49. 49.
    Young JM, Park DC, Shearman HM, Fargier E (2008) A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol 5:366–377CrossRefGoogle Scholar
  50. 50.
    Hopkins DL (1989) Xylella fastidiosa: xylem-limited bacterial pathogen of plants. Ann Rev Phytopathol 27:271–290CrossRefGoogle Scholar
  51. 51.
    Araújo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Enviro Microbiol 68:4906–4914CrossRefGoogle Scholar
  52. 52.
    Zhang S, Cruz ZF, Kumar D, Hopkins DL, Gabriel DW (2011) The Xylella fastidiosa biocontrol strain EB92-1 genome is very similar and syntenic to Pierce’s disease strains. J Bacteriol 193:5576–5577CrossRefGoogle Scholar
  53. 53.
    Lo CT (1998) General mechanisms of action of microbial biocontrol agents. Plant Pathol Bull 7:155–166Google Scholar
  54. 54.
    Ahanger RA, Bhatand HA, Dar NA (2014) Biocontrol agents and their mechanism in plant disease management. Sciencia Acta Xaveriana, An Int Sci J 5:47–58Google Scholar
  55. 55.
    Tzeng KC, Lin YC, Hsu ST (1994) Foliar fluorescent pseudomonads from crops in Taiwan and their antagonism to phytopathogenic bacteria. Plant Pathol Bull 3:24–33Google Scholar
  56. 56.
    Nishioka MF, Nakashima N, Matsuyama N (1997) Antibacterial activities of metabolites produced by Erwinia spp. against various phytopathogenic bacteria. Ann Phytopathol Soc Japan 63:99–102CrossRefGoogle Scholar
  57. 57.
    Défago G, Haas D (1990) Pseudomonads as antagonists of soilborne plant pathogens: modes of action and genetic analysis. In: Bollag JM, Stotsky G (eds) Soil biochemistry. Marcel Dekker Inc., New YorkGoogle Scholar
  58. 58.
    Pal KK, Gardener BM (2006) Biological control of plant pathogens. The Plant Health Instructor. Scholar
  59. 59.
    Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181CrossRefGoogle Scholar
  60. 60.
    DeSouza JTA, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-PearsonV Raaijmakers JM (2003) Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopatholol 93:966–975CrossRefGoogle Scholar
  61. 61.
    Notz R, Maurhofer M, Schnider-Keel U Duffy B, Haas D, Defago G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathol 91:873–881Google Scholar
  62. 62.
    Nalini S, Parthasarathi R, PrabudossV (2016) Production and characterization of lipo-peptide from Bacillus SNAU01 under solid state fermentation and its potential application as anti-biofilm agent. Biocatal Agric Biotechnol 5:123–132Google Scholar
  63. 63.
    Bakker PA, Glandorf DC, Viebahn M, Ouwens TW, Smit E, Leeflang P, Wernars K, Thomashow LS, Thomas-Oates JE, Van Loon LC (2002) Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2, 4-diacetyl-phloroglucinol on the microflora of field grown wheat. Antonie Van Leeuwenhoek 81:617–624CrossRefGoogle Scholar
  64. 64.
    Kerr A (1989) Commercial release of a genetically engineered bacterium for the control of crown gall. Agric Sci 2:41–48Google Scholar
  65. 65.
    Ghisalberti EL, Sivasithamparam K (1991) Antifungal antibiotics produced by Trichoderma spp. Soil Biol Biochem 23:1011–1020CrossRefGoogle Scholar
  66. 66.
    Maurhofer M, Keel C, Haas D, Defago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production. Plant Pathol 44:40–50CrossRefGoogle Scholar
  67. 67.
    Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Dis 64:25–50Google Scholar
  68. 68.
    Koumoutsi A, Chen XH, Hene A, Liesegang H, Gabrielle H, Frnke P, Vater J, Borris H (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bact 186:1084–1096CrossRefGoogle Scholar
  69. 69.
    Smith KP, Havy MJ, Handelsman J (1993) Suppression of cottony leak of cucumber with Bacillus cereus UW85. Plant Dis 77:139–142CrossRefGoogle Scholar
  70. 70.
    Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629CrossRefGoogle Scholar
  71. 71.
    Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266CrossRefGoogle Scholar
  72. 72.
    Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Enviro Microbiol 71:4577–4584CrossRefGoogle Scholar
  73. 73.
    Sandra AI, Wright CH, Zumoff LS, Steven VB (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Enviro Microbiol 67:282–292Google Scholar
  74. 74.
    Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-Diacetphloroglucinal from a fluorescent pseudomonad and investigation of physic-ological parameters influencing its production. Appl Enviro Microbiol 17:107–113Google Scholar
  75. 75.
    Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas in rhizosphere of wheat. Appl Enivron Microbiol 56:908–912Google Scholar
  76. 76.
    Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluterin. Phytopathol 70:712–715CrossRefGoogle Scholar
  77. 77.
    Islam TM, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 in linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Eviron Microbiol 71:3786–3796CrossRefGoogle Scholar
  78. 78.
    Wilhite SE, Lunsden RD. Strancy DC (2001) Peptide synthetase gene in Trichod-erma virens. Appl Environ Microbiol 65:5055–5062Google Scholar
  79. 79.
    Homma Y, Kato Z, Hirayman F, Konno K, Shirahama H, Suzui T (1989) Production of antibiotics by Pseudomonas capacia as an agent for biological control of soilbrone plant pathogens. Soil Biochem 21:723–728CrossRefGoogle Scholar
  80. 80.
    Leong SA, Expert D (1989) Siderophores in plantpathogen interactions. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, molecular and genetic perspectives, vol. 3. McGraw-Hill, New York, pp 62–83Google Scholar
  81. 81.
    Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Molec Plant Microbe Interact 4:5–13CrossRefGoogle Scholar
  82. 82.
    Hamdan H, Weller DM, Thomashow LS (1991) Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-7 9 and M4-80R. Appl Environ Microbiol 57:3270–3277Google Scholar
  83. 83.
    Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathol 86:149–155CrossRefGoogle Scholar
  84. 84.
    Di Pietro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathol 83:302–307CrossRefGoogle Scholar
  85. 85.
    Chet I (1987) Trichoderma application, mode of action and potential as biocontrol agent of soil-borne pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160Google Scholar
  86. 86.
    Haran S, Schickler H, Peer S, Logeman S, Oppenheim A, Chet I (1993) Increased constitutive chitinase activity in transformed Trichoderma harzianum. Biol Control 3:101–108CrossRefGoogle Scholar
  87. 87.
    Shapira R, Ordentlich A, Chet I, Oppenheim AB (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathol 79:1124–1249CrossRefGoogle Scholar
  88. 88.
    Sequeira L (1983) Mechanisms of induced resistance in plants. Ann Rev Microbiol 37:51–79CrossRefGoogle Scholar
  89. 89.
    Hammerschmidt R, Lamport DTA, Muldoon EP (1984) Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum. Physiol. Plant Pathol 24:43–47CrossRefGoogle Scholar
  90. 90.
    Alstrom S (1995) Evidence of disease resistance induced by rhizosphere pseudomonads against Pseudomonas syringae pv. phaseolicola. J Gen Appl Microbiol 41:315–325CrossRefGoogle Scholar
  91. 91.
    Van Peer RG, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathol 81:728–734CrossRefGoogle Scholar
  92. 92.
    Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance to tobacco necrosis virus. Phytopathol 84:139–146CrossRefGoogle Scholar
  93. 93.
    Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  94. 94.
    Valencia-Cantero E, Hernandez-Calderón E, Velázquez-Becerra C, López-Meza JE, Alfaro-Cuevas R, Lopez-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273CrossRefGoogle Scholar
  95. 95.
    Tsuge K, Akiyama T, Shoda MJ (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183:6265–6273CrossRefGoogle Scholar
  96. 96.
    Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058CrossRefGoogle Scholar
  97. 97.
    Masih H, Singh AK, Kumar Y, Srivastava A, Singh RK, Mishra SK, Shivam K (2011) Isolation and optimization of metabolite production from mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. J Pharmac Biomed Sci 11:1–4Google Scholar
  98. 98.
    Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc National Acad Sci USA 100:4927–4932CrossRefGoogle Scholar
  99. 99.
    Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paré PW, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integrat Biol 3:130–138CrossRefGoogle Scholar
  100. 100.
    Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathol 97:250–256CrossRefGoogle Scholar
  101. 101.
    Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645CrossRefGoogle Scholar
  102. 102.
    Voisard C, Keel C, Haas D, Défago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358CrossRefGoogle Scholar
  103. 103.
    Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Rev Microbiol 3:307–319CrossRefGoogle Scholar
  104. 104.
    Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959CrossRefGoogle Scholar
  105. 105.
    Weindling R (1934) Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathol 24:1153–1179Google Scholar
  106. 106.
    Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10CrossRefGoogle Scholar
  107. 107.
    Kapat A, Zimand G, Elad Y (1998) Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytis cinerea. Physiol Mol Plant Pathol 52:127–137CrossRefGoogle Scholar
  108. 108.
    Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242CrossRefGoogle Scholar
  109. 109.
    Kerr A, Htay K (1974) Biological control of crown gall through bacteriocin production. Physiol Plant Pathol 41:37–40CrossRefGoogle Scholar
  110. 110.
    Garrett CME (1978) Biological control of crown gall, Agrobacterium tumefaciens. Ann Appl Biol 89:96–97CrossRefGoogle Scholar
  111. 111.
    Amiot AF, Róux J, Faivre M (1982) Biological control of Agrobacterium tumefaciens (Schmit et Townsend) Conn on Chrysanthemum with K84 Agrobacterium radiobacter (Beijerinck et Var Delder) Conn strain. In: ISHS Acta Horticulturae, 125: Symposium on Chrysanthemum.
  112. 112.
    Thomson JA (1986) The potential for biological control of crown gall disease on grapevines. Trends of Biotechnol 4:219–224CrossRefGoogle Scholar
  113. 113.
    López MM, Gorris MT, Salcedo CI, Montojo AM, Miró M (1989) Evidence of biological control of Agrobacterium tumefaciens strains sensitive and resistant to agrocin 84 by different Agrobacterium radiobacter strains on stone fruit trees. Appl Environ Microbiol 55:741–746Google Scholar
  114. 114.
    Vicedo B, Penalver R, Asins MJ, Lopez MM (1993) Biological control of Agrobacterium tumefaciens, colonization, and pAgK84 transfer with Agrobacterium radiobacter K84 and the Tra-mutant strain K1026. Appl Environ Microbiol 59(1):309–315Google Scholar
  115. 115.
    Ryder MH, Jones DA (1991) Biological control of crown gall using Agrobacterium strains K84 and K1026. Austr J Plant Physiol 18:571–579Google Scholar
  116. 116.
    Rhouma A, Ferchichi A, Hafsa M, Boubaker A (2004) Efficacy of the non-pathogenic Agrobacterium strains K84 and K1026 against crown gall in Tunisia. Phytopathol Mediterr 43:167–176Google Scholar
  117. 117.
    Nalini S, Parthasarathi R, PrabudossV (2016) Production and characterization of lipo-peptide from Bacillus SNAU01 under solid state fermentation and its potential application as anti-biofilm agent. Biocatal Agric Biotechnol 5:123–132. -->Google Scholar
  118. 118.
    Kawaguchi A, Inoue K, Ichinose Y (2008) Biological control of crown gall of grapevine, rose and tomato by nonpathogenic Agrobacterium vitis strain VAR03-1. Phytopathol 98:1218–1225CrossRefGoogle Scholar
  119. 119.
    Gupta AK, Khosla K, Bhardwaj SS, Thakur A, Devi S, Jarial RS, Sharma C, Singh KP, Srivastava DK, Lal R (2010) Biological control of crown gall on peach and cherry rootstock colt by native Agrobacterium radiobacter isolates. Open Horticul J 3:1–10CrossRefGoogle Scholar
  120. 120.
    Tolba IH, Soliman MA (2013) Efficacy of native antagonistic bacterial isolates in biological control of crown gall disease in Egypt. Ann Agric Sci 58:43–49CrossRefGoogle Scholar
  121. 121.
    Czajkowski R (2016) Bacteriophages of soft rot Enterobacteriaceae—a minireview. FEMS Microbiol Let 363:230CrossRefGoogle Scholar
  122. 122.
    Krzyzanowska DM, Potrykus M, Golanowska M, Polonis K, Gwizdek-Wisniewska A Lojkowska E, Jafra S (2012) Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. J Plant Pathol 94:367–378Google Scholar
  123. 123.
    Delfan AS, Etemadifar Z, Emtiazi G, Bouzari M (2015) Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages. Braz J Microbiol 46:791–797CrossRefGoogle Scholar
  124. 124.
    Essarts YR, Cigna J, Laurent Q, Caron A, Munier E, Cirou AB, Hélias V, Faure D (2015) Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Appl Environ Microbiol 82:268–278CrossRefGoogle Scholar
  125. 125.
    Hadizadeh I, Peivastegan B, Hannukkala A, Van der Wolf JM, Nissinen R, Pirhonen M (2019) Biological control of potato soft rot caused by Dickeya solani and the survival of bacterial antagonists under cold storage conditions. Plant Pathol 68:297–311CrossRefGoogle Scholar
  126. 126.
    Vanneste JLYUJ, Beer SV (1992) Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora. J Bacteriol 174:2785–2796CrossRefGoogle Scholar
  127. 127.
    Wilson M, Lindow SE (1993) Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathol 83:117–123CrossRefGoogle Scholar
  128. 128.
    Pusey PL (2002) Biological control agents for fire blight of apple compared under conditions limiting natural dispersal. Plant Dis 86:639–644CrossRefGoogle Scholar
  129. 129.
    Laux P, Wesche J, Zeller W (2003) Field experiments on biological control of fire blight by bacterial antagonists. J Plant Dis Prot 110:401–407Google Scholar
  130. 130.
    Özaktan H, Bora T (2004) Biological control of fire blight in pear orchards with a formulation of Pantoea agglomerans strain Eh 24. Braz J Microbiol 35:224–229.
  131. 131.
    Sundin GW, Yoder KS, Aldwinckle HS (2009) Field evaluation of biological control of fire blight in the Eastern United States. Plant Dis 93:386–394CrossRefGoogle Scholar
  132. 132.
    Gerami E, Hassanzadeh N, Abdollahi H, Ghasemi A, Heydari A (2013) Evaluation of some bacterial antagonists for biological control of fire blight disease. J Plant Pathol 95:127–134Google Scholar
  133. 133.
    Doolotkeldieva T, Bobusheva S (2016) Fire blight disease caused by Erwinia amylovora on rosaceae plants in Kyrgyzstan and biological agents to control this disease. Adv Microbiol 6:831–851CrossRefGoogle Scholar
  134. 134.
    Smail AB, Abderrahman O, Abdessalem T (2016) Evaluation of biological control agent Pantoea agglomerans P10c against fire blight in Morocco. Afr J Agric Res 11:1661–1667CrossRefGoogle Scholar
  135. 135.
    Mikiciński A, Sobiczewski P, Puławska J, Maciorowski R (2016) Control of fire blight Erwinia amylovora by a novel strain 49M of Pseudomonas graminis from the phyllosphere of apple (Malus spp.). Europ J Plant Pathol 145:265–276Google Scholar
  136. 136.
    Ameur A, Rhallabi N, Doussomo ME, Benbouazza A, Ennaji MM, Achbani E (2017) Selection and efficacy biocontrol agents in vitro against fire blight (Erwinia amylovora) of the rosacea. Int Res J Eng Technol 4:539–545Google Scholar
  137. 137.
    Sharifazizi M, Harighi B. Sadeghi A (2017) Evaluation of biological control of Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria. Biol Cont 104:28–34Google Scholar
  138. 138.
    Cronin D, Loccoz YM, Fenton A, Dunne C, Dowling DN O’Gara F (1997) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetyl-phloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol Ecol 23:195–106Google Scholar
  139. 139.
    EI-Hendawy HH, Zeid IM, Mohamed ZK (1998) The biological control of soft rot disease in melon caused by Erwinia carotovora subsp. carotovora using Pseudomonas fluorescens. Microbial Res 153:55–60Google Scholar
  140. 140.
    Zamanian S, Shahidi BGH, Saadoun H (2005) First report of antibacterial properties of a new of Sterptomyces plicatus (strain 101) against Erwinia carotovra subsp. carotovra from Iran. Biotechnol 4:114–120CrossRefGoogle Scholar
  141. 141.
    Baz M, Lahbabi D, Samri S, Val F, Hamelin G, Madore I, Bouarab K, Beaulieu C, Ennaji MM, Barakate M (2012) Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacterium atrosepticum by Moroccan actinobacteria isolates. World J Microbiol Biotechnol 28:303–311Google Scholar
  142. 142.
    Abd El-Khair H, Haggag KHE (2007) Application of some bactericides and bioagents for controlling the soft rot disease in potato. Res J Agric Biol Sci 3:463–473Google Scholar
  143. 143.
    Juan NM, Jessica CS, Luigi CP, Marcia CL, Ricardo FP, Renate ST (2008) Biocontrol of Erwinia carotovora on Calla (Zantedeschia sp.). Agro Sur 36:59–70CrossRefGoogle Scholar
  144. 144.
    Dong F, Zhang XH, Li YH, Wang JF, Zhang SS, Hu XF, Chen JS (2010) Characterization of the endophytic antagonist pY11T-3-1 against bacterial soft rot of Pinellia ternate. Let Appl Microbiol 50:611–617CrossRefGoogle Scholar
  145. 145.
    Mello MRF, Silveira EB, Viana IO, Guerra ML, Mariano RLR (2011) Use of antibiotics and yeasts for controlling Chinese cabbage soft rot. Hortic Bras 29:78–83CrossRefGoogle Scholar
  146. 146.
    Qianqian L, Ni H, Meng S, He Y, Yu Z, Li L (2011) Suppressing Erwinia carotovora pathogenicity by projecting N-acyl homoserine lactonase onto the surface of Pseudomonas putida cells. J Microbiol Biotechnol 21:1330–1335CrossRefGoogle Scholar
  147. 147.
    Issazadeh K, Rad SK, Zarrabi S, Rahimibashar MR (2012) Antagonism of Bacillus species against Xanthomonas campestris pv. campestris and Pectobacterium carotovorum subsp. carotovorum. Afr J Microbiol Res 6:1615–1620Google Scholar
  148. 148.
    Ghods-Alavi BS, Ahmadzadeh M, Behboudi K, Jamali S (2012) Biocontrol of rhizome soft rot (Pectobacterium carotovorum) on valerian by Pseudomonas spp. under in vitro and greenhouse conditions. J Agric Technol 8:1913–1923Google Scholar
  149. 149.
    Rahman MM, Ali ME, Khan AA, Akanda AM, Kamal Uddin MD, Hashim U, AbdHamid SB (2012) Isolation, characterization and identification of biological control agent for potato soft rot in Bangladesh. Sci World J Article ID 723293, 6 p.
  150. 150.
    Algeblawi A, Adam F (2013) Biological control of Erwinia carotovora subsp carotovora by Pseudomonas fluorescens, Bacillus subtilis and Bacillus thurin-giensis. Int J Chem Environ Biol Sci 1:771–774Google Scholar
  151. 151.
    Sowmya DS, Rao MS, Kumar RM, Gavaskar J, Priti K (2012) Biomana-gement of Meloidogyne incognita and Erwinia carotovora in carrot (Daucus carota L.) using Pseudomonas putida and Paecilomyces lilacinus. Nematol medit 40:189–194Google Scholar
  152. 152.
    Saputra H, Puspita F, Nugroho TT (2013) Production of an antibacterial compound against the plant pathogen Erwinia carotovora subs. carotovora by the biocontrol strain Gliocladium sp. T.N.C73. J Agric Technol 9:1157–1165Google Scholar
  153. 153.
    Zhao Y, Li P, Huang K, Wang Y, Hu H, Sun Y (2013) Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential modes of action. World J Microbiol Biotechnol 29:411–420CrossRefGoogle Scholar
  154. 154.
    Li HY, Luo Y, Zhang XS, Shi WL, Gong ZT, Shi M, Chen LL, Chen XL, Zhang YZ, Song XY (2014) Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against Gram-negative Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage. FEMS Microbiol Lett 354:75–82CrossRefGoogle Scholar
  155. 155.
    Makhlouf, Abeer, H. and Abdeen, Rehab (2014) Investigation on the effect of chemical and biological control of bacterial soft root disease of potato in storage. J Biol Agric Healthcare 4:31–44Google Scholar
  156. 156.
    Sandipan PB, Chaudhary RF, Shanadre CM, Rathod NK (2015) Appraisal of diverse bioagents against soft rot bacteria of potato (Solanum tuberosum L.) caused by Erwinia carotovora subsp. carotovora under in vitro test. Europ J Pharmac Medical Res 2:495–500Google Scholar
  157. 157.
    Idowu OO, Olawole OI, Idumu OO, Salami AO (2016) Bio-control effect of Trichoderma asperellum (Samuels) Lieckf. and Glomus intraradices Schenk on okra seedlings infected with Pythium aphanidermatum (Edson) Fitzp and Erwinia carotovora (Jones). American J Exp Agric 10:1–12CrossRefGoogle Scholar
  158. 158.
    Doolotkeldieva T, Bobusheva S, Suleymankisi A (2016) Biological control of Erwinia carotovora ssp. carotovora by Streptomyces species. Adv Microbiol 6:104–114CrossRefGoogle Scholar
  159. 159.
    Ha NT, Minh TQ, Hoi PX, Thuy NTT, Furuya N, Long HH (2018) Biological control of potato tuber soft rot using N-acyl-L-homoserine lactone-degrading endophytic bacteria. Current Sci 115:1921–1927CrossRefGoogle Scholar
  160. 160.
    Salem EA, Abd El-Shafea YM (2018) Biological control of potato soft rot caused by Erwinia carotovora subsp. carotovora. Egypt J Biol Pest Cont 19:28:94Google Scholar
  161. 161.
    Kiewnick AB, Jacobsen BJ, Sands DC (2000) Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of Barley, by antagonistic Pantoea agglomerans. Phytopathol 90:368–375CrossRefGoogle Scholar
  162. 162.
    Völksch B, May R (2001) Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microb Ecol 41:132–139Google Scholar
  163. 163.
    Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. Scholar
  164. 164.
    Kotan R, Sahin F (2006) Biological control of Pseudomonas syringae pv. syringae and nutritional similarity in carbon source utilization of pathogen and its potential biocontrol agents. J Turk Phytopath 35:1–13Google Scholar
  165. 165.
    Hassan EO, El-Meneisy AZA (2014) Biocontrol of halo blight of bean caused by Pseudomonas phaseolicola. Int J Virol 10:235–242CrossRefGoogle Scholar
  166. 166.
    Mougou I, M’hamdi NB (2018) Biocontrol of Pseudomonas syringae pv. syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract. Egypt J Biol Pest Cont 19:28:60Google Scholar
  167. 167.
    Wicaksono WA, Jones EE, Casonato S, Monk J, Ridgway HJ (2018) Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol Cont 116:103–112CrossRefGoogle Scholar
  168. 168.
    Nikolić I, Berić T, Stankovic SS (2019) Biological control of Pseudomonas syringae pv. aptata on sugar beet with Bacillus pumilus SS-10.7 and Bacillus amyloliquefaciens (SS-12.6 and SS-38.4) strains. J Appl Microbiol
  169. 169.
    Anuratha CS, Gnanamanickam SS (1990) Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria. Plant Soil 124:109–116CrossRefGoogle Scholar
  170. 170.
    Lwin M, Ranamukhaarachchi SL (2006) Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. Int J Agric Biol 8:1560–8530Google Scholar
  171. 171.
    Lemessa F, Zeller W (2007) Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Cont 42:336–344CrossRefGoogle Scholar
  172. 172.
    Kuarabachew H, Assefa F, Hiskias Y (2007) Evaluation of Ethiopian isolates of Pseud-omonas fluorescens as biocontrol agent against potato bacterial wilt caused by Ralstonia (Pseudomonas) solanacearum. Acta Agric Slov 90:125–135Google Scholar
  173. 173.
    Tahat MM, Sijam K (2010) Ralstonia solanacearum: the bacterial wilt causal agent. Asian J Plant Sci 9:385–393CrossRefGoogle Scholar
  174. 174.
    Nguyen MT, Ranamukhaarachchi SL (2010) Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J Plant Pathol 92:395–406Google Scholar
  175. 175.
    Nawangsih AA, Damayanti I, Wiyono S, Kartika JG (2011) Selection and characterization of endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. HAYATI J Biosci 18:66–70CrossRefGoogle Scholar
  176. 176.
    Seleim MAA, Saead FA, Abd-El-Moneem KMH, Abo-ELyousr KAM (2011) Biological control of bacterial wilt of tomato by plant growth promoting rhizobacteria. Plant Pathol J 10:146–153CrossRefGoogle Scholar
  177. 177.
    Maji S, Chakrabartty PK (2014) Biocontrol of bacterial wilt of tomato caused by Ralstonia solanacearum by isolates of plant growth promoting rhizobacteria. Astu J crop Sci 8:208–214Google Scholar
  178. 178.
    Santiago TR, Grabowski C, Rossato M, Romeiro RS, Mizubuti ESG (2015) Biological control of Eucalyptus bacterial wilt with rhizobacteria. Biol Cont 80:14–22CrossRefGoogle Scholar
  179. 179.
    Aino M (2016) Studies on biological control of bacterial wilt caused by Ralstonia solanacearum using endophytic bacteria. J Gen Plant Pathol 82:323–325CrossRefGoogle Scholar
  180. 180.
    Singh D, Yadav DK, Chaudhary G, Rana VS, Sharma RK (2016) Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. J Plant Pathol Microbiol 7:327CrossRefGoogle Scholar
  181. 181.
    Ilsan NA, Nawangsih AA, Wahyudi AT (2016) Rice phyllosphere actinomycetes as biocontrol agent of bacterial leaf blight disease on rice. Asian J Plant Pathol 10:1–8CrossRefGoogle Scholar
  182. 182.
    Sindhan GS, Parashar RD, Indra H (1997) Biological control of bacterial leaf of rice caused by Xanthomonas oryzae pv. oryzae. Plant Dis Res 12:29–32Google Scholar
  183. 183.
    Hastuti RD, Estari Y, Suwanto A, Saraswati R (2012) Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). HAYATI J Biosci 19:155–162Google Scholar
  184. 184.
    Van Hop D, Phuong HPT, Quang ND, Ton PH, Ha TH, Van Hung N, Van NT, Van Hai T, Kim Quy NT, Anh Dao NT, Thi-Thom V (2014) Biological control of Xanthomonas oryzae pv. oryzae causing rice bacterial blight disease by Streptomyces toxytricini VN08-A-12, isolated from soil and leaf-litter samples in Vietnam. Biocontrol Sci 1:103–111CrossRefGoogle Scholar
  185. 185.
    El-Shakh ASA, Kakar KU, Wang X, Almoneafy AA, Ojaghian MR, Li B (2015) Controlling bacterial leaf blight of rice and enhancing the plant growth with endophytic and rhizobacterial Bacillus strains. Toxicol Environ Chem 97:766–785CrossRefGoogle Scholar
  186. 186.
    Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M, Iqbal M (2017) Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol. Scholar
  187. 187.
    Assis SMP, Mariano RLR, Michereff SJ, Silva G, Maranhão EAA (1999) Antagonism of yeasts to Xanthomonas campestris pv. campestris on cabbage phylloplane in field. Revista de Microbiol 30:191–195CrossRefGoogle Scholar
  188. 188.
    Luna CL, Mariano RLR, Souto-Maior AM (2002) Production of a biocontrol agent for crucifers black rot diseaseproduction of a biocontrol agent for crucifers black rot disease. Braz J Chem Eng 19:133–140CrossRefGoogle Scholar
  189. 189.
    Wulff EG, Mguni CM, Mortensen CN, Keswani CL, Hockenhull J (2002) Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Europ J Plant Pathol 108:317–325CrossRefGoogle Scholar
  190. 190.
    Massomo SMS, Mortensen CN, Mabagala RB, Newman MA, Hockenhull J (2004) Biological control of black rot (Xanthomonas campestris pv. campestris) of cabbage in Tanzania with Bacillus strains. J Phytopathol 152:98–105CrossRefGoogle Scholar
  191. 191.
    El-Hendawy HH, Osman ME, Sorour NM (2005) Biological control of bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria by Rahnella aquatilis. Microbiol Res 160:343–352CrossRefGoogle Scholar
  192. 192.
    Monteiro L, Mariano RLR, Souto AMM (2005) Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Braz Arch Biol Technol 48:23–29CrossRefGoogle Scholar
  193. 193.
    Mirik M, Aysan Y, Çinar Ö (2008) Biological control of bacterial spot disease of pepper with Bacillus strains. Turkish J Agric For 32(5):381–390Google Scholar
  194. 194.
    Suárez-Estrella F, Ros M, Vargas-García MC, López MJ, Moreno J (2014) Control of Xanthomonas campestris pv. vesicatoria using agroindustrial waste-based compost. J Plant Pathol 96:243–248Google Scholar
  195. 195.
    Salah Eddin K, Marimuthu T, Ladhalakshmi D, Velazhahan R (2007) Biological control of bacterial blight of cotton caused by Xanthomonas axonopodis pv. malvacearum with Pseudomonas fluorescens. Arch Phytopathol Plant Prot 40:291–300CrossRefGoogle Scholar
  196. 196.
    Montakhabi MK, Rahimian H, Falahati RM, Jafarpour B (2011) In vitro investigation on biocontrol of Xanthomonas axonopodis pv. citri cause of citrus bacterial canker by citrus antagonistic bacteria. J Plant Prot (Agric Sci Technol) 24:368–376Google Scholar
  197. 197.
    Lopes LP, Oliveira Jr AG, Beranger JPO, Góis CG. Vasconcellos FCS, San Martin JA. Andrade CGTJ, Mello JCP, Andrade G (2012) Activity of extracellular compounds of Pseudomonas sp. against Xanthomonas axonopodis in vitro and bacterial leaf blight in eucalyptus. Trop Plant Pathol 37.
  198. 198.
    Das R, Mondal B, Mondal P, Khatua DC, Mukherjee N (2014) Biological management of citrus canker on acid lime through Bacillus subtilis (S-12) in West Bengal, India. J Biopest 7(supp):38–41Google Scholar
  199. 199.
    Murate LS, de Oliveira AG, Higashi AY, Barazetti AR Simionato AS, da Silva CS, Simões GC, dos Santos IMO, Ferreira MR, Cely MVT, Navarro MOP, de Freitas VF, Nogueira MA, de Mello JCP, Leite Jr RP, Andrade G (2015) Activity of secondary bacterial metabolites in the control of citrus canker. Agric Sci 6:295–303Google Scholar
  200. 200.
    Tewfike TA, Desoky SM (2015) Biocontrol of Xanthomonas axonopodis causing bacterial spot by application of formulated phage. Ann Agric Sci Moshtohor 53:615–624Google Scholar
  201. 201.
    Chavan NP, Pandey R, Nawani N, Nanda RK, Tandon GD, Khetmalas MB (2016) Biocontrol potential of actinomycetes against Xanthomonas axonopodis pv. punicae, a causative agent for oily spot disease of pomegranate. Biocontrol Sci Technol 26:351–372CrossRefGoogle Scholar
  202. 202.
    Osman TMT, Algam SAE, Ali ME, Osman EHB, Mahdi AA (2016) In vitro screening of some biocontrol agents against Xanthomonas axonopodis pv. malvacearum isolated from infected cotton plants. Int J Agric, For Plantat 2:270–278Google Scholar
  203. 203.
    Puneeth ME (2016) Biocontrol of bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae (Hingorani and Singh) Vauterin et al. MSc. Thesis, University of Agricultural Sciences, Plant Pathology, Bengaluru (Abstract)Google Scholar
  204. 204.
    Corrêa BO, Soares VN, Sangiogo M, de Oliveira JR, Andréa BMAB (2017) Interaction between bacterial biocontrol-agents and strains of Xanthomonas axonopodis pv. phaseoli effects on biocontrol efficacy of common blight in beans. Afr J Microbiol Res 11:1294–1302CrossRefGoogle Scholar
  205. 205.
    Oliver R, Owens W, Hopkins DL (2008) Interaction of a biological control strain and a pathogenic strain of Xylella fastidiosa in grapevine. J Plant Pathol 90S:195Google Scholar
  206. 206.
    Lacava PT, Arau´jo WL, Marcon J, Maccheroni W Jr, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Let Appl Microbiol 39:55–59Google Scholar
  207. 207.
    Hopkins DL, Thompson CM (2008) Biological control of Pierce’s disease in the vineyard with a benign strain of Xylella fastidiosa. J Plant Pathol 90S:115Google Scholar
  208. 208.
    Hopkins DL (2005) Biological control of Pierce’s disease in the vineyard with strains of Xylella fastidiosa Benign to Grapevine. Plant Dis 89:1348–1352CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Plant Pathology DepartmentNational Research CentreDokki, GizaEgypt

Personalised recommendations