Retinopathy Analysis Based on Deep Convolution Neural Network

  • Yuji HatanakaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1213)


At medical checkups or mass screenings, the fundus examination is effective for early detection of systemic hypertension, arteriosclerosis, diabetic retinopathy, etc. In most cases, ophthalmologists and physicians grade retinal images by the condition of the blood vessels, lesions. However, human observation does not provide quantitative results, thus blood vessel analysis is an important process in determining hypertension and arteriosclerosis, quantitatively. This chapter describes the latest automated blood vessel extraction using the deep convolution neural network (DCNN). Diabetic retinopathy is a common cardiovascular disease and a major factor in blindness. Therefore, early detection of diabetic retinopathy is very important to preventing blindness. A microaneurysm is an initial sign of diabetic retinopathy, and much research has been conducted for microaneurysm detection. This chapter also describes diabetic retinopathy detection and automated microaneurysm detection using the DCNN.


Hypertensive retinopathy Diabetic retinopathy Cardiovascular disease Retinal image Fundus examination 


  1. 1.
    Scheie HG (1953) Evaluation of ophthalmoscopic changes of hypertension and arteriolar sclerosis. Arch Ophthalmol 49(2):117–138CrossRefGoogle Scholar
  2. 2.
    Wong TY, Mitchell P (2004) Hypertensive retinopathy. N Engl J Med 351(22):2310–2317CrossRefGoogle Scholar
  3. 3.
    Soares JV, Leandro JJ, Cesar Júnior RM, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222CrossRefGoogle Scholar
  4. 4.
    Rangayyan RM, Ayres FJ, Oloumi F, Oloumi F, Eshghzadeh-Zanjani P (2008) Detection of blood vessels in the retina with multiscale Gabor filters. J Electron Imaging 17(2):023018CrossRefGoogle Scholar
  5. 5.
    Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operator and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365CrossRefGoogle Scholar
  6. 6.
    Staal J, Abràmoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004) Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509CrossRefGoogle Scholar
  7. 7.
    Akatsuka Y, Oost E, Shimizu A, Kobatake A, Furukawa D, Katayama A (2010) Vessel segmentation in eye fundus images using ... eye fundus image based on ensemble learning and a classifier cascade. IEICE Tech Rep 109(407):143–148Google Scholar
  8. 8.
    Hatanaka Y, Nakagawa T, Hayashi Y, Aoyama A, Zhou X, Hara T, Fujita H, Mizukusa Y, Fujita A, Kakogawa M (2005) Automated detection algorithm for arteriolar narrowing on fundus images. In: Proceedings of the 27th Annual International Conference of the IEEE-EMBS 2005, pp 286–289Google Scholar
  9. 9.
    Nakagawa T, Hayashi Y, Hatanaka Y, Aoyama A, Mizukusa Y, Fujita A, Kakogawa M, Hara T, Fujita H, Yamamoto T (2006) Recognition of optic nerve head using blood-vessel-erased image and its application to production of simulated stereogram in computer-aided diagnosis system for retinal images. IEICE Trans Inf Syst J89-D(11):2491–2501Google Scholar
  10. 10.
    Iwase T, Muramatsu C, Hatanaka Y, Zhou X, Hara T, Fujita H (2009) Automated detection and classification of major arteries and veins for arteriolar narrowing analysis on retinal fundus images. IEICE Tech Rep 109(407):189–193Google Scholar
  11. 11.
    Hatanaka Y, Samo K, Ogohara K, Sunayama W, Muramatsu C, Okumura S, Fujita H (2017) Automated blood vessel extraction based on high-order local autocorrelation features on retinal images. In: VipIMAGE2017, vol 27, pp 803–810Google Scholar
  12. 12.
    Fu H, Yanwu X, Wong D, Jiang L (2016) Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: Proceedings of the IEEE 13th International Symposium on Biomedical Imaging, pp 698–701Google Scholar
  13. 13.
    Martina M, Pavle P, Sven L (2015) Retinal vessel segmentation using deep neural networks. In: Proceedings of the VISAPP, vol 1, pp 577–581Google Scholar
  14. 14.
    Dasgupta A, Singh S (2017) A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: Proceedings of the ISBI, pp 248–251Google Scholar
  15. 15.
    Ikawa H, Hatanaka Y, Sunayama W, Ogohara K, Muramatsu C, Fujita H (2019) Arteriovenous classification method using convolutional neural network for early detection of retinal vascular lesion. In: Proceedings of the SPIE 11050 International Forum on Medical Imaging in Asia 2019, p 110501MGoogle Scholar
  16. 16.
    Foracchia M, Grisan E, Ruggeri A (2005) Luminosity and contrast normalization in retinal images. Med Image Anal 9(3):179–190CrossRefGoogle Scholar
  17. 17.
    Le Q, Karpenko A, Ngiam J, Ng A (2011) Ica with reconstruction cost for efficient overcomplete feature learning. Adv Neural Inf Process Syst:1017–1025Google Scholar
  18. 18.
    Friedman J (1987) Exploratory projection pursuit. J Am Stat Assoc 82(397):249–266CrossRefGoogle Scholar
  19. 19.
    Bell A, Sejnowski T (1997) The “Independent Components” of natural scenes are edge filters. Vis Res 37(23):3327–3338CrossRefGoogle Scholar
  20. 20.
    LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, pp 1–46CrossRefGoogle Scholar
  21. 21.
    Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Proc Neural Inf Process Syst 2012:1–9Google Scholar
  22. 22.
    Niemeijer M, Xu X, Dumitrescu AV, Gupta P, Ginneken B, Folk JC, Abrámoff M (2011) Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs. IEEE Trans Med Imaging 30(11):1941–1950CrossRefGoogle Scholar
  23. 23.
    Dashtbozorg B, Mendonca AM, Penas S, Campilho A (2014) RetinaCAD, a system for the assessment of retinal vascular changes. In: Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 6328–6331Google Scholar
  24. 24.
    Vázquez SG, Cancela B, Barreira N, Penedo MG, Rodríguez-Blanco M, Pena Sei-jo M, Coll de Tuero G, Barceló MA, Saez M (2013) Improving retinal artery and vein classification by means of a minimal path approach. Mach Vis Appl 24(5):919–930CrossRefGoogle Scholar
  25. 25.
    Muramatsu C, Hatanaka Y, Iwase T, Hara T, Fujita H (2011) Automated selection of major arteries and veins for measurement of arteriolar-to-venular diameter ratio on retinal fundus images. Comput Med Imaging Graph 35(6):472–480CrossRefGoogle Scholar
  26. 26.
    Hatanaka Y, Tachiki H, Okumura S, Ogohara K, Muramatsu C, Fujita H (2017) Automated independent extraction of major arteries and veins on retinal images. Med Imaging Inf Sci 34(3):136–140Google Scholar
  27. 27.
    Meyer MI, Galdran A, Costa P, Mendonça AM, Campilho A (2018) Deep convolutional artery/vein classification of retinal vessels. In: ICIAR 2018 Lecture Notes in Computer Science, vol 10882, pp 622–630Google Scholar
  28. 28.
    Girard F, Kavalec C, Cheriet F (2019) Joint segmentation and classification of retinal arteries/veins from fundus images. Artif Intell Med 94:96–109CrossRefGoogle Scholar
  29. 29.
    Hu Q, Abràmoff MD, Garvin MK (2013) Automated separation of binary overlapping trees in low-contrast color retinal images. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013), pp 436–443CrossRefGoogle Scholar
  30. 30.
    Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–9Google Scholar
  31. 31.
    Knudtson MD, Lee KE, Hubbard LD, Wong TY, Klein R, Klein BEK (2003) Revised formulas for summarizing retinal vessel diameters. Curr Eye Res 27(3):143–149CrossRefGoogle Scholar
  32. 32.
    Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376(9735):124–136CrossRefGoogle Scholar
  33. 33.
    Niemeijer M, van Ginnerken B, Cree MJ, Mizutani A, Quellec G, Sanchez CI, Zhang B, Hornero R, Lamard M, Muramatsu C, Wu X, Cazuquel G, You J, Mayo A, Li Q, Hatanaka Y, Cochener B, Roux C, Karray F, Garcia M, Fujita H, Abramoff MD (2010) Retinopathy Online Challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 29(1):185–195CrossRefGoogle Scholar
  34. 34.
    Adal KM, Sidibe D, Ail S, Chaum E, Karnowski TP, Mériaudeau F (2014) Automated detection of microaneurysms using scale-adapted blood analysis and semi-supervised learning. Comput Methods Programs Biomed 114(1):1–10CrossRefGoogle Scholar
  35. 35.
    Antal B, Hajdu A (2012) An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Trans Biomed Eng 59(6):1720–1726CrossRefGoogle Scholar
  36. 36.
    Seoud L, Hurtut T, Chelbi J, Cheriet F, Langlois JM (2016) Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imaging 35(4):1116–1126CrossRefGoogle Scholar
  37. 37.
    Dai B, Wu X, Bu W (2016) Retinal microaneurysms detection using gradient vector analysis and class imbalance classification. PLoS One 11(8):0161556Google Scholar
  38. 38.
    Inoue T, Hatanaka Y, Okumura S, Ogohara K, Muramatsu C, Fujita H (2015) Automatic microaneurysm detection in retinal fundus images by density gradient vector concentration. J Inst Image Electron Eng Jpn 44(1):58–66Google Scholar
  39. 39.
    Hatanaka Y, Inoue T, Ogohara K, Okumura S, Muramatsu C, Fujita H (2018) Automated microaneurysm detection in retinal fundus images based on the combination of three detectors. J Med Imaging Health Inform 8(5):1103–1112CrossRefGoogle Scholar
  40. 40.
    Haaloi M (2016) Improved microaneurysm detection using deep neural networks. arXiv:1505.04424v2Google Scholar
  41. 41.
    Chudzik P, Majumdar S, Caliva F, AI-Diri B, Hunter A (2018) Microaneurysm detection using fully convolutional neural networks. Comp Methods Programs Biomed 158:185–192CrossRefGoogle Scholar
  42. 42.
    Miyashita M, Hatanaka Y, Ogohara K, Muramatsu C, Sunayama W, Fujita H (2018) Automatic detection of microaneurysms in retinal image by using convolutional neural network. Med Imaging Technol 36(4):189–195Google Scholar
  43. 43.
    Kauppi T, Kalesnykiene V, Kamarainen JK, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, Kälviäinen H, Pietilä J (2007) Diaretdb1 diabetic retinopathy database and evaluation protocol. In: Proceedings of the 11th Conference on Medical Image Understanding and Analysis 2007, pp 61–65Google Scholar
  44. 44.
    Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621CrossRefGoogle Scholar
  45. 45.
    Weszka JS, Dyer CR, Rosenfeld A (1976) A comparative study of texture measures for terrain classification. IEEE Trans Syst Man Cybern 6(4):269–285CrossRefGoogle Scholar
  46. 46.
    Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4(2):172–179CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Shiga PrefectureHikone-cityJapan

Personalised recommendations