Advertisement

Diatom Ecological Modelling with Weighted Pattern Tree Algorithm by Using Polygonal and Gaussian Membership Functions

  • Andreja NaumoskiEmail author
  • Georgina Mirceva
  • Kosta Mitreski
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1110)

Abstract

Weighted Pattern Tree (WPT) algorithm is as an extension of the Pattern Tree (PT) algorithm, which could be used for fuzzy modelling. This algorithm utilizes the similarity between two fuzzy sets in order to quantify how much a particular tree model is confident to predict a given class. The Membership Functions (MFs) play an important role in model induction and thus on the model’s performance. Therefore, this paper aims to investigate the influence of different MFs, not only by analyzing different mathematical distributions, but also to investigate the influence of the number of MFs per attribute used for fuzzification of the datasets, as well as the different settings of the algorithm in the area of diatom ecological modelling. The experimental results show that WPTs with depth 10 using polygonal MFs with high number of MFs per attribute are excellent for describing the training data, while the models that are built with low number of MFs are excellent for making predictions for unseen data. The results from this research can be used for ecological modelling of diatoms, to classify a given diatom into a particular water quality class.

Keywords

Weighted Pattern Trees Diatoms Membership Functions Statistical significance 

Notes

Acknowledgment

This work was partially financed by the Faculty of Computer Science and Engineering at the Ss. Cyril and Methodius University in Skopje.

References

  1. 1.
    Abramowitz, M.: Handbook of Mathematical Functions. Graphs, and Mathematical Tables, With Formulas, Dover Publications (1974)Google Scholar
  2. 2.
    García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180, 2044–2064 (2010)CrossRefGoogle Scholar
  3. 3.
    Hodges, J., Lehmann, E.: Ranks methods for combination of independent experiments in analysis of variance. Annal. Math. Stat. 33, 482–497 (1962)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hommel, G.: A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75, 383–386 (1988)CrossRefGoogle Scholar
  5. 5.
    Huang, Z., Gedeon, T.D.: Pattern trees. In: 2006 IEEE International Conference on Fuzzy Systems, pp. 1784–1791. IEEE (2006)Google Scholar
  6. 6.
    Huang, Z., Nikravesh, M., Azvine, B., Gedeon, T.D.: Weighted pattern trees: a case study with customer satisfaction dataset. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS, vol. 4529, pp. 395–406. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72950-1_39CrossRefGoogle Scholar
  7. 7.
    Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Trans. Syst. Man Cybern. 28(1), 1–14 (1998)CrossRefGoogle Scholar
  8. 8.
    Kóczy, L.T., Vámos, T., Biró, G.: Fuzzy signatures. In: EUROFUSE-SIC, pp. 210–217 (1999)Google Scholar
  9. 9.
    Krammer, K., Lange-Bertalot, H.: Die Ssswasserflora von Mitteleuropa 2: Bacillariophyceae. 1 Teil, pp. 876. Gustav Fischer-Verlag, Stuttgart (1986)Google Scholar
  10. 10.
    Nikravesh, M., Bensafi, S.: Soft computing for perception-based decision processing and analysis: web-based BISC-DSS. In: Nikravesh, M., Zadeh, L.A., Kacprzyk, J. (eds.) Soft Computing for Information Processing and Analysis. Studies in Fuzziness and Soft Computing, vol. 164, pp. 93–188. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-540-32365-1_4CrossRefGoogle Scholar
  11. 11.
    Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets Syst. 138, 221–254 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Quinlan, J.R.: Decision trees and decision making. IEEE Trans. Syst. Man Cybern. 20(2), 339–346 (1990)CrossRefGoogle Scholar
  13. 13.
    Stroemer, E.F., Smol, J.P.: The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge (2004)Google Scholar
  14. 14.
    Suárez, A., Lutsko, J.F.: Globally optimal fuzzy decision trees for classification and regression. IEEE Trans. Pattern Anal. Mach. Intell. 21(12), 1297–1311 (1999)CrossRefGoogle Scholar
  15. 15.
    TRABOREMA Project: WP3, EC FP6-INCO project no. INCO-CT-2004-509177 (2005–2007)Google Scholar
  16. 16.
    Van Dam, H., Martens, A., Sinkeldam, J.: A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands J. Aquatic Ecol. 28(1), 117–133 (1994)CrossRefGoogle Scholar
  17. 17.
    Van Der Werff, A., Huls, H.: Diatomeanflora van Nederland. Abcoude - De Hoef (1957, 1974)Google Scholar
  18. 18.
    Wang, X., Chen, B., Olan, G., Ye, F.: On the optimization of fuzzy decision trees. Fuzzy Sets Syst. 112, 117–125 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yi, Y., Fober, T., Hüllermeier, E.: Fuzzy operator trees for modeling rating functions. Int. J. Comput. Intell. Appl. 8(04), 413–428 (2009)Google Scholar
  20. 20.
    Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69(2), 125–139 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andreja Naumoski
    • 1
    Email author
  • Georgina Mirceva
    • 1
  • Kosta Mitreski
    • 1
  1. 1.Faculty of Computer Science and EngineeringSs. Cyril and Methodius University in SkopjeSkopjeNorth Macedonia

Personalised recommendations