Advertisement

Data that Can Be Acquired from Optical Clearing Studies

  • Luís Manuel Couto Oliveira
  • Valery Victorovich Tuchin
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

In this chapter, we will describe methods based on simple measurements that allow one to acquire information of diverse nature. Regarding the characterization of optical clearing treatments and evaluation of their efficiency, we discuss a method to obtain the refractive index kinetics of the interstitial ground medium and another method to obtain the kinetics of the scattering properties of a tissue under study. The evaluation of the diffusion properties for the optical clearing agents and water involved in the fluxes between the tissue and the treating solution is also important. To obtain these properties, we describe in Sect. 6.4 a simple ex vivo method, which from collimated transmittance and thickness measurements allows one to estimate the diffusion time and the diffusion coefficient of these fluids. Such method can be used as a complementary diagnostic tool, since it allows also for discrimination between normal and pathological tissues. Also with the objective of obtaining physiological or pathological information from tissues, we describe in Sect. 6.5 the discovery of two new optical clearing windows in the ultraviolet range, which may turn possible the development of new diagnostic or treatment methodologies.

Keywords

Collimated transmittance Refractive index Diffuse reflectance Total reflectance Total transmittance Specular reflectance Molecular diffusion UV-optical window 

References

  1. 1.
    A. Kotyk, K. Janacek, Membrane Transport: An Interdisciplinary Approach (Plenum Press, New York, NY, 1997)Google Scholar
  2. 2.
    V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, WA, 2006)Google Scholar
  3. 3.
    V. Hovhannisyan, P.-S. Hu, S.-J. Chen, C.-S. Kim, S.-Y. Dong, Elucidation of the mechanisms of optical clearing in collagen tissue with multiphoton imaging. J. Biomed. Opt. 18(4), 046004 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    L. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, Optical clearing mechanisms characterization in muscle. J. Innov. Opt. Health Sci. 9(5), 1650035 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Silvestri, I. Constantini, L. Scconi, F.S. Pavone, Clearing of fixed tissue: a review from microscopist’s perspective. J. Biomed. Opt. 21(8), 081205 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    A.Y. Sdobnov, M.E. Darvin, J. Schleusener, J. Lademann, V.V. Tuchin, Hydrogen bound water profiles in the skin influenced by optical clearing molecular agents – quantitative analysis using confocal Raman microscopy. J. Biophotonics 12(5), e21800283 (2019)CrossRefGoogle Scholar
  7. 7.
    I. Carneiro, S. Carvalho, R. Henrique, L.M. Oliveira, V.V. Tuchin, A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues. J. Biophotonics 12(4), e201800333 (2019)CrossRefGoogle Scholar
  8. 8.
    L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Skeletal muscle dispersion (400-1000 nm) and kinetics at optical clearing. J. Biophotonics 11(1), e201700094 (2018)CrossRefGoogle Scholar
  9. 9.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Kinetics of optical properties of colorectal muscle during optical clearing. IEEE J. Sel. Top. Quant. Elect. 25(1), 7200608 (2019)CrossRefGoogle Scholar
  10. 10.
    C.-S. Choe, J. Lademann, M.E. Darvin, Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo. Analyst 141(22), 6329–6337 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    I. Carneiro, S. Carvalho, V. Silva, R. Henrique, L. Oliveira, V.V. Tuchin, Kinetics of optical properties of human colorectal tissues during optical clearing: a comparative study between normal and pathological tissues. J. Biomed. Opt. 23(12), 121620 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    I. Carneiro, S. Carvalho, R. Henrique, L.M. Oliveira, V.V. Tuchin, Optical properties of colorectal muscle in visible/NIR range, in Biophotonics: Photonic Solutions for Better Health Care VI, ed. by J. Popp, V.V. Tuchin, F.S. Pavone. Proc. SPIE 10685, 106853D (2018)Google Scholar
  13. 13.
    A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.S. Rubtsov, E.A. Kolesnikova, V.V. Tuchin, Optical properties of human colon tissues in the 350-2500 spectral range. Quant. Electron. 44(8), 779–784 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm, in Dynamics and Fluctuations in Biomedical Photonics XIV, ed. by V.V. Tuchin, K.V. Larin, M.J. Leahy, R.K. Wang. Proc. SPIE 10063, 100631L (2017)CrossRefGoogle Scholar
  16. 16.
    D.W. Leonard, K.M. Meek, Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma. Biophys. J. 72(3), 1382–1387 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    K.M. Meek, S. Dennis, S. Khan, Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells. Biophys. J. 85(4), 2205–2212 (2003)CrossRefGoogle Scholar
  18. 18.
    K.M. Meek, D.W. Leonard, C.J. Connon, S. Dennis, S. Khan, Transparency, swelling and scarring in the corneal stroma. Eye 17, 927–936 (2003)CrossRefGoogle Scholar
  19. 19.
    O. Zernovaya, O. Sydoruk, V. Tuchin, A. Douplik, The refractive index of human hemoglobin in the visible range. Phys. Med. Biol. 56, 4013–4021 (2011)CrossRefGoogle Scholar
  20. 20.
    L.-H. Wang, S.L. Jacques, L.-Q. Zheng, MCML – Monte Carlo modeling of photon transport in multi-layered tissues. Comp. Met. Progr. Biomed. 47(2), 131–146 (1995)CrossRefGoogle Scholar
  21. 21.
    S.A. Prahl, M.J.C. Van Gemert, A.J. Welch, Determining the optical properties of turbid media by using the adding-doubling method. Appl. Optics 32(4), 559–568 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    R. Graaff, J.G. Aarnoudse, J.R. Zijp, P.M.A. Sloot, F.F. de Mul, J. Greve, M.H. Koelink, Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations. Appl. Optics 31(10), 1370–1376 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    H. Liu, B. Beauvoit, M. Kimura, B. Chance, Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity. J. Biomed. Opt. 1(2), 200–211 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    E.A. Genina, A.N. Bashkatov, V.V. Tuchin, in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, ed. by V. V. Tuchin, (CRC Press, Boca Raton, FL, 2009). Chapter 21Google Scholar
  25. 25.
    M.G. Ghosn, E.F. Carbajal, N.A. Befrui, V.V. Tuchin, K.V. Larin, Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera. J. Biomed. Opt. 13(2), 021110-1–021110-6 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Q.L. Zhao, J.L. Si, Z.Y. Guo, H.J. Wei, H.Q. Yang, G.Y. Wu, S.S. Xie, X.Y. Li, X. Guo, H.Q. Zhong, L.Q. Li, Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography. Laser Phys. Lett. 8(1), 71–77 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    H. Ullah, E. Ahmed, M. Ikram, Monitoring of glucose levels in mouse blood with noninvasive optical methods. Laser Phys. 24(2), 025601-1–025601-8 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    O. Zhernovaya, V.V. Tuchin, M.J. Leahy, Blood optical clearing studied by optical coherence tomography. J. Biomed. Opt. 18(2), 26014-1–26014-8 (2013)Google Scholar
  29. 29.
    P. Liu, Y. Huang, Z. Guo, J. Wang, Z. Zhuang, S. Liu, Discrimination of dimethyl sulfoxide diffusion coefficient in the process of optical clearing by confocal micro-Raman spectroscopy. J. Biomed. Opt. 18(2), 20507-1–20507-3 (2013)Google Scholar
  30. 30.
    L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, The characteristic time of glucose diffusion measured for muscle tissue at optical clearing. Laser Phys. 23, 075606-1–075606-6 (2013)ADSGoogle Scholar
  31. 31.
    L.M. Oliveira, M.I. Carvalho, E.M. Nogueira, V.V. Tuchin, Diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20(5), 051019-1–051019-10 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Glucose diffusion in colorectal mucosa – a comparative study between normal and cancer tissues. J. Biomed. Opt. 22(9), 091506-1–091506-12 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Simple multimodal optical technique for evaluation of free/bound water and dispersion of human liver tissue. J. Biomed. Opt. 22(12), 125002-1–125002-10 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Water content and scatterers dispersion evaluation in colorectal tissues. J. Biomed. Phot. Eng. 3(4), 040301-1–040301-10 (2017)Google Scholar
  35. 35.
    V.V. Tuchin, Optical immersion as a new tool for controlling the optical properties of tissues and blood. Laser Phys. 15, 1109–1136 (2005)Google Scholar
  36. 36.
    D.K. Tuchina, A.N. Bashkatov, A.B. Bucharskaya, E.A. Genina, V.V. Tuchin, Study of glycerol diffusion in skin and myocardium ex vivo under the conditions of developing alloxan-induced diabetes. J. Biomed. Phot. Eng. 3(2), 020302-1–020302-9 (2017)Google Scholar
  37. 37.
  38. 38.
    M. Daimon, A. Masumura, Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Optics 46, 3811–3820 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    I.Z. Kozma, P. Krok, E. Riedle, Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet. J. Opt. Soc. Am. B 22, 1479–1485 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    R.D. Birkhoff, L.R. Painter, J.M. Heller Jr., Optical and dielectric functions of liquid glycerol from gas photoionization measurements. J. Chem. Phys. 69, 4185–4188 (1978)ADSCrossRefGoogle Scholar
  41. 41.
    E. Sani, A. Dell’Oro, Optical constants of ethylene glycol over an extremely wide spectral range. Opt. Mater. 37, 36–41 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    E. Sani, A. Dell’Oro, Corrigendum to optical constants of ethylene glycol over an extremely wide spectral range. Opt. Mater. 48, 281 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    J. Hirshburg, B. Choi, J.S. Nelson, A.T. Yeh, Collagen solubility correlates with skin optical clearing. J. Biomed. Opt. 11, 040501 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Moving tissue spectral window to the deep-UV via optical clearing. J. Biophotonics, e201900181 (2019)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luís Manuel Couto Oliveira
    • 1
  • Valery Victorovich Tuchin
    • 2
    • 3
    • 4
    • 5
  1. 1.Physics Department and Center for Innovation in Engineering and Industrial TechnologyPolytechnic Institute of Porto – School of EngineeringPortoPortugal
  2. 2.Department of Optics and BiophotonicsSaratov State UniversitySaratovRussia
  3. 3.Institute of Precision Mechanics and Control of the RASSaratovRussia
  4. 4.Bach Institute of BiochemistryResearch Center of Biotechnology of the RASMoscowRussia
  5. 5.Tomsk State University, Tomsk & ITMO UniversitySt. PetersburgRussia

Personalised recommendations