Advertisement

Data Turn and Datascape in Russia

  • Marina ShilinaEmail author
Chapter
  • 5 Downloads
Part of the Societies and Political Orders in Transition book series (SOCPOT)

Abstract

This chapter presents the main features of developing data-driven processes in Russia and their social influence. First, the author analyses the development of the concept of Big Data in a multilevel theoretical framework. This approach serves as a methodological starting point to identify and differentiate this bio–socio–technological phenomenon in Russia (and beyond). The chapter presents a new theoretical concept for the datafied transformation of a capitalistic society, called a Data Turn. Thanks to the Data Turn as a universal theoretical framework, a holistic vision of data-driven relations is opening. A new concept of the data-driven divide is also presented. By describing the current Russian data landscape, the author emphasises the unique opportunities offered by various data-driven practices in a datafied society to open new social problems in their relevant use and research—especially in Russian data art projects, where data artists present their social worries and insights. The chapter finishes with a description of the main findings and future problems to be discussed.

Keywords

Big Data Data Turn Hybrid (corpo)reality Quadro helix of Russian data-driven economy Data-driven divide Data ecology Data art Bifurcation point 

References

  1. Akyildiz, I., Pierobon, M., Balasubramaniam, S., & Koucheryavy, Y. (2015). The internet of Bio-Nano things. Communications Magazine, IEEE, 53(3), 32–40.CrossRefGoogle Scholar
  2. Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired, 16(7). Google Scholar
  3. Andrejevic, M. (2014). The Big Data divide. International Journal of Communication, 8, 1673–1689.Google Scholar
  4. Bello-Orgaz, G., Jung, J., & Camacho, D. (2016). Social Big Data: Recent achievements and new challenges. Information Fusion, 28, 45–59.CrossRefGoogle Scholar
  5. Belsey, B. (2005). Cyberbullying: An emerging threat to the “always on” generation. Retrieved September 10, 2018, from http://www.cyberbullying.ca
  6. Berardi, F. (2005). What does cognitariat mean? Work, desire and depression. Cultural Studies Review, 11, 57–63. Retrieved September 10, 2018, from http://epress.lib.uts.edu.au/journals/index.php/csrj/indexpp.CrossRefGoogle Scholar
  7. Beyer, A., & Laney, D. (2012). The importance of “Big Data”: A definition. Gartner, G00235055.Google Scholar
  8. Boellstorff, T. (2013). Making Big Data, in theory. First Monday, 18(10). Retrieved September 10, 2018, from http://firstmonday.org/ojs/index.php/fm/article/view/4869/3750
  9. boyd, d., & Crawford, K. (2012). Critical questions for Big Data. Information, Communication & Society, 15(5), 662–679.CrossRefGoogle Scholar
  10. Braidotti, R. (2013). The Posthuman. Cambridge: Polity Press.Google Scholar
  11. Bromwich, J. (2018, January 31). We asked generation Z to pick a name. It wasn’t generation Z. The New York Times. Retrieved September 10, 2018, from https://www.nytimes.com/2018/01/31/style/generation-z-name.html
  12. Buckland, M. (2017). Information and society. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  13. Carayannis, E. G., & Campbell, D. F. J. (2009). Mode 3′ and ‘Quadruple Helix’: Toward a 21st century fractal innovation ecosystem. International Journal of Technology Management, 46(3/4), 201.Google Scholar
  14. Carayannis, E. G., & Campbell, D. F. J. (2010). Triple Helix, Quadruple Helix and Quintuple Helix and how do knowledge, innovation and the environment relate to each other? A proposed framework for a trans-disciplinary analysis of sustainable development and social ecology. International Journal of Social Ecology and Sustainable Development, 1(1), 41–69.CrossRefGoogle Scholar
  15. Center of Robotic Process Automation & AI Annual Report. (2017). Retrieved September 10, 2018, from https://rparussia.ru/about/
  16. Coté, M., Gerbaudo, P., & Pybus, J. (2016). Introduction: Politics of Big Data. Digital Culture and Society, 2(2), 5–18.Google Scholar
  17. Couldry, N., & Mejias, U. (2019). The costs of connection. Stanford, CA: Stanford University Press.Google Scholar
  18. Crawford, K., Gray, M., & Miltner, K. (2014). Critiquing Big Data: Politics, ethics, epistemology. International Journal of Communication, 8, 1663–1672. Retrieved September 10, 2018, from http://ijoc.org/index.php/ijoc/article/view/2167/1164.Google Scholar
  19. Dalton, C., & Thatcher, J. (2014). Inflated granularity: The promise of Big Data and the need for a critical data studies. Presentation at the Annual Meeting of the Association of American Geographers, Tampa, FL, April 9, 2014. Retrieved September 10, 2018, from http://meridian.aag.org/callforpapers/program/AbstractDetail.cfm?AbstractID=56048
  20. Dalton, C., & Thatcher, J. (2016). What does a critical data studies look like, and why do we care? Seven points for a critical approach to “Big Data”. Society and Space Open Site (2014). Retrieved September 10, 2018, from http://societyandspace.org/2014/05/12/what-does-a-critical-data-studies-look-like-and-why-do-we-care-craig-dalton-and-jim-thatcher/October23
  21. Davis, N. (2016, January 19). What is the fourth industrial revolution? Retrieved September 10, 2018, from https://www.weforum.org/agenda/2016/01/what-is-the-fourth-industrial-revolution/
  22. Frost & Sullivan Report. (2018). Innovations in synthetic biology and sequencing technology. Retrieved September 10, 2018, from https://www.researchandmarkets.com/reports/4519883/innovations-in-synthetic-biology-and-sequencing#pos-79
  23. Fuchs, C. (2016). Critical theory of communication. London: University of Westminster Press.Google Scholar
  24. Gartner Report. (2015). Hype cycle for emerging technologies identifies the computing innovations that organizations should monitor. Retrieved September 10, 2018, from https://www.gartner.com/newsroom/id/3114217
  25. Gerbaudo, P. (2016). From data analytics to data hermeneutics. Online political discussions, digital methods and the continuing relevance of interpretive approaches. Digital Culture & Society, 2(2), 95–112.CrossRefGoogle Scholar
  26. Gitelman, L. (Ed.). (2013). “Raw data” is an oxymoron. Cambridge, MA: MIT Press.Google Scholar
  27. Gokhberg, L. M., Kislyakov, E. Y., Kuzminov, Y. I., & Sabelnikova, M. A. (Eds.). (2019). Tsifrovaya ekonomika: 2019: kratkiy statisticheskiy sbornik [The digital economy: 2019: A short statistical compilation]. Moscow: National Research University Higher School of Economics.Google Scholar
  28. Gokhberg, L. M., Kuzminov, Y. I., & Sabelnikova, M. A. (Eds.). (2018). Indikatory tsifrovoy ekonomiki: 2018: statisticheskiy sbornik [Digital Economy Indicators: 2018: Statistical compilation]. Moscow: National Research University Higher School of Economics.Google Scholar
  29. Grant, R. H. (2016). Contemporary strategy analysis (9th ed.). Hoboken, NJ: Wiley.Google Scholar
  30. Hayles, K. N. (1999). How we became Posthuman: Virtual bodies in cybernetics, literature, and informatics. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  31. Heidegger, М. (1962). Die Technik und die Kehre (pp. 37–47). Pfullingen: Neske.Google Scholar
  32. Hintz, A., Dencik, L., & Wahl-Jorgensen, K. (2018). Digital citizenship in a datafied society. Cambridge: Polity Press. Retrieved September 10, 2018, from http://orca.cf.ac.uk/id/eprint/109651/.Google Scholar
  33. IDC Annual Report. (2014). Retrieved September 10, 2018, from https://www.idc.org/pdf/14_ici_annual.pdf
  34. IDC Annual Report. (2017). Retrieved September 10, 2018, from https://www.idc.org/pdf/17_ici_annual.pdf
  35. ISC Consulting. (2018). Retrieved September 10, 2018, from http://www.ics-consulting.ru/uslugi/transformatsiya-biznesa/
  36. Ishikawa, H. (2015). Social Big Data mining. Boca Raton, FL: Taylor & Francis Group, CRC Press.CrossRefGoogle Scholar
  37. Jameson, F. (1988). Cognitive mapping. In C. Nelson & L. Grossberg (Eds.), Marxism and the interpretation of culture. Urbana, IL: University of Illinois Press.Google Scholar
  38. Kaplan, F. (2015). A map for Big Data research in digital humanities. Frontiers in Digital Humanities, 2, 1.CrossRefGoogle Scholar
  39. Kitchin, R. (2014a). The data revolution: Big Data, open data, data infrastructures and their consequences. London: SAGE.Google Scholar
  40. Kitchin, R. (2014b). Short presentation on the need for critical data studies. The Programmable City blog. Retrieved September 10, 2018, from http://www.nuim.ie/progcity/2014/04/short-presentation-on-the-need-for-critical-data-studies/
  41. Kitchin, R. (2017). Thinking critically about and researching algorithms. Information, Communication & Society, 20(1), 14–29. Retrieved September 10, 2018, from  https://doi.org/10.1080/1369118X.2016.1154087
  42. Kitchin, R., & Dodge, M. (2011). Code/space: Software and everyday life. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  43. Kol’tsova, Y. (2012). Chem dyshit blogosfera? K metodologii analiza bol’shikh tekstovykh dannykh dlya sotsiologicheskikh zadach. Onlayn issledovaniya v Rossii 3.0. [What does blogosphere breath? On methodology of analyzing large textual data for sociological tasks]. In I. F. Devyatko, A. V. Shashkin, & S. G. Davydov (Eds.), Online research in Russia 3.0 (pp. 163–187). Moscow: OMI.Google Scholar
  44. Koucheryavy, Y., Kirichek, R., Glushakov, R., & Pirmagomedov, R. (2017). Quo vadis, humanity? Ethics on the last mile toward cybernetic organism. The Russian Journal of Communication, 9(3), 287–293.CrossRefGoogle Scholar
  45. Laney, D. (2001). 3D data management: Controlling data volume, velocity, and variety. Application Delivery Strategies. META Group. File 949.Google Scholar
  46. Lupton, D. (2016). Personal data practices in the age of lively data. In J. Daniels, K. Gregory, & T. Mcmillan Cottom (Eds.), Digital sociologies (pp. 335–350). Bristol: Policy Press.Google Scholar
  47. Lupton, D. (2017). Digital bodies. In D. Andrews, M. Silk, & H. Thorpe (Eds.), Routledge handbook of physical cultural studies (pp. 200–208). London: Routledge.CrossRefGoogle Scholar
  48. Lynch, C. (2008). How do your data grow? Nature, 455, 28–29. Retrieved from https://www.nature.com/articles/455028a.CrossRefGoogle Scholar
  49. Mandiberg, M. (2012). The social media reader. New York: New York University Press.Google Scholar
  50. Manovich, L. (2011). Trending: The promises and the challenges of big social data. Debates in the Digital Humanities, 2, 460–475.Google Scholar
  51. Marr, B. (2016, April 5). Why everyone must get ready for 4th industrial revolution? Forbes. Retrieved September 10, 2018, from https://www.forbes.com/sites/bernardmarr/2016/04/05/why-everyone-must-get-ready-for-4th-industrial-revolution
  52. Marx, K. (1976). Capital (Vol. I). Harmondsworth: Penguin.Google Scholar
  53. Mayer-Schönberger, V., & Cukier, K. (2013). Big Data: A revolution that will transform how we live, work, and think. New York: Houghton Mifflin Harcourt.Google Scholar
  54. McKinsey Global Institute. (2017). Tsifrovaya Rossiya: novaya real’nost’ [Digital Russia: A new reality]. Retrieved September 10, 2018, from https://www.mckinsey.com/ru/~/media/McKinsey/Locations/Europe%20and%20Middle%20East/Russia/Our%20Insights/Digital%20Russia/Digital-Russia-report.ashx
  55. Medovnikov, D. (Ed.). (2018). Tsifrovaya ekonomika: global’nyye trendy i praktika rossiyskogo biznesa [Digital economy: Global trends and Russian business practices]. Moscow: HSE.Google Scholar
  56. Mironov, B. (2012). The standard of living and revolutions in Russia, 1700–1917. London: Routledge.CrossRefGoogle Scholar
  57. Mironov, B., & Eklof, B. (2000). 1–2. In A social history of Imperial Russia, 1700–1917. Boulder, CO: Westview Press.Google Scholar
  58. Mumford, L. (1991). Authoritarian and democratic technics. In J. Zerzan & A. Carnes (Eds.), Questioning technology: Tool, toy, or tyrant? (pp. 13–21). Philadelphia, PA: New Society Publishers.Google Scholar
  59. Ninenko, I. (2017). Neuro sync: Inventing data-enhanced communication in Russia. The Russian Journal of Communication, 9(3), 278–286.CrossRefGoogle Scholar
  60. Olshannikova, E., Olsson, T., Huhtamäki, J., & Kärkkäinen, H. (2017). Conceptualizing big social data. Journal of Big Data, 4(3), 2–19. Retrieved September 10, 2018, from https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-017-0063-x.Google Scholar
  61. Orange Business Services Report. (2018). Retrieved September 10, 2018, from https://www.orange-business.com/ru/projects
  62. Pentland, A. (2014). Social physics: How good ideas spread-the lessons from a new science. New York: The Penguin Press, Penguin Group.Google Scholar
  63. Pew Research. (2016, April 25). Birth under each generation. Millennials overtake baby boomers as America’s largest generation. Retrieved September 10, 2018, from http://www.pewresearch.org/fact-tank/2016/04/25/millennials-overtake-baby-boomers/
  64. Pew Research. (2018, March 1). Fry, R. Millennials projected to overtake Baby Boomers as America’s largest generation. Retrieved September 10, 2018, from http://www.pewresearch.org/fact-tank/2018/03/01/millennials-overtake-baby-boomers/
  65. Programma. (2017). Tsifrovaya ekonomika Rossiyskoy Federacii [Digital economy of the Russian Federation Program]. Moscow. Retrieved September 10, 2018, from http://static.government.ru/media/files/9gFM4FHj4PsB79I5v7yLVuPgu4bvR7M0.pdf
  66. Puschmann, C., & Burgess, J. (2014). Big Data, big questions. Metaphors of Big Data. International Journal of Communication, 8, 20.Google Scholar
  67. Pybus, J., Coté, M., & Blanke, T. (2015). Hacking the social life of Big Data. Big Data & Society, 2(2), 26–33.CrossRefGoogle Scholar
  68. Radchenko, I., & Sakoyan, A. (2014). The view on open data and data journalism: Cases, educational resources and current trends. Communications in Computer and Information Science, 436, 47–54.CrossRefGoogle Scholar
  69. RAEC. (2017). RAEC podvel itogi goda [RAEC sums up the year]. Retrieved September 10, 2018, from http://raec.ru/live/raec-news/10096/
  70. RBC. (2018). Rynok Bol’shikh dannykh (BigData): 2017–2027. Perspektivy razvitiya v Rossii. Vozmozhnosti, problemy, strategii, prognoz [Big Data Market (BigData): 2017–2027. Prospects for development in Russia. Opportunities, problems, strategies, a forecast]. Retrieved September 10, 2018, from https://marketing.rbc.ru/research/39982/
  71. Rieder, B. (2016). Big Data and the paradox of diversity. Digital Culture & Society, 2(2), 39–54.CrossRefGoogle Scholar
  72. ROCIT. (2017). Index tsifrovoy gramotnosti [Digital Literacy Index]. Retrieved September 10, 2018, from http://цифроваяграмотность.рф/mindex/2017/Google Scholar
  73. ROCIT. (2018). Index tsifrovoy gramotnosti [Digital Literacy Index]. Retrieved April 10, 2019, from http://цифроваяграмотность.рф/mindex/2018/Google Scholar
  74. Ross, D. (2005). Economic theory and cognitive science: Microexplanation. Cambridge, MA: MIT Press.Google Scholar
  75. Sallam, R. L., Howson, C., Idoine, C. J., Oestreich, T. W., Richardson, J. L., & Tapadinhas, J. (2017). Magic quadrant for business intelligence and analytics platforms. The Gartner. Retrieved September 10, 2018, from https://www.gartner.com/doc/3611117/magic-quadrant-business-intelligence-analytics
  76. Samostienko, E., & Mironova, I. (2017). Digital behaviour and ethics: Performativity of data in Russian media art. Russian Journal of Communication, 9(3), 314–319.Google Scholar
  77. Schäfer, M. T., & van Es, K. (Eds.). (2017). The datafied society: Studying culture through data. Amsterdam: Amsterdam University Press.Google Scholar
  78. Schwab, K. (2016, January 14). The fourth industrial revolution and how to respond. Retrieved September 10, 2018, from https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
  79. Shashkin, A., & Davydov, S. (2016). Onlayn issledovaniya v Rossii 3.0. [Online research in Russia 3.0.]. Moscow: OMI.Google Scholar
  80. Shilina, M. (2012). Tekstogennyje trasnsformacii infosfery. Metodologicheskij eskiz stanovleniya interneta [Textogenous transformations of the infosphere. Methodological sketch of the formation of the Internet]. Moscow: Severo-Vostok, HSE.Google Scholar
  81. Shilina, M. (2013). Data journalism – k voprosu formirovanija teoreticheskih issledovatel’skih podhodov [Data Journalism in media—Forming theoretical approaches]. Moscow: Mediascope, 1. Retrieved September 10, 2018, from http://www.mediascope.ru/node/1263
  82. Shilina, A. (2016a). Zhurnalistika dannych v kachestvennych rossyjskich journalah: opyt identifikacii [Identifying data journalism in quality Russian journals]. Tver’: Vestnik Tverskogo gosudarstvennogo universiteta, Seriya Phylologija, 3, 226–228.Google Scholar
  83. Shilina, M. (2016b). Big&Open Data kak faktor transformatsii professional’noy sotsial’noy kommunikatsii? [Big & Open Data as a factor in the transformation of professional social communication?]. Moscow: Kommunikatsiya, Media. Dizayn, 3: 19–33.Google Scholar
  84. Shilina, M., Couch, R., & Peters, B. (2017). Data: An ethical overview. The Russian Journal of Communication, 9(3), 229–240.CrossRefGoogle Scholar
  85. Shilina, M., & Vartanov, S. (2019). Doveriye kak kategoriya teorii kommunicatsii v paradigme tsifrovoy ekonomiki [Trust as a category of communication theory in the paradigm of the digital economy]. Moscow: Medialmanakh, 1, 20–38.Google Scholar
  86. Taylor, L. (2015). Towards a contextual and inclusive data studies: A response to Dalton and Thatcher. Society and Space blog.Google Scholar
  87. Thatcher, J., O’Sullivan, D., & Mahmoudi, D. (2016). Data colonialism through accumulation by dispossession: New metaphors for daily data. Environment and Planning D: Society and Space, 34(6), 990–1006.CrossRefGoogle Scholar
  88. Van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society, 12(2), 197–208.CrossRefGoogle Scholar
  89. Walliser, D. (2008). Cognitive economics. Berlin: Springer.Google Scholar
  90. Wikibon Big Data and Analytics Forecast. (2017). Retrieved September 10, 2018, from https://wikibon.com/2017-big-data-and-analytics-forecast/
  91. Yevtushenko, Ye. (1965). Bratskaya GES [Bratsk HES]. Moscow.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Advertising, PR and DesignPlekhanov Russian University of EconomicsMoscowRussia
  2. 2.Department of Advertising and PRLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations