Advertisement

The Role and Impact of Descriptive Theories in Creating Knowledge in Design Science

Conference paper
  • 216 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 654)

Abstract

In this paper, we clarify the role of descriptive knowledge in creating prescriptive knowledge with design science research. We demonstrate the connection by presenting an approach that utilizes kernel theories produced by the grounded theory research methodology in the creation of meta-level design science artefacts. These meta-level artefacts can be used to inform the design processes of situational artefacts, such as instantiations of software and services. We demonstrate and evaluate the approach further by using it to frame an ongoing research project that creates a meta-artefact to address issues in smart city service design.

Keywords

Design science Kernel theory Grounded theory Descriptive knowledge Prescriptive knowledge Meta-artefact 

Notes

Acknowledgements

The work of the first author was supported by the Ulla Tuominen Foundation. This work was supported, in part, by Science Foundation Ireland grant 13/RC/2094 and co-funded under the European Regional Development Fund through the Southern & Eastern Regional Operational Programme to Lero - the Irish Software Research Centre (www.lero.ie).

References

  1. 1.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)CrossRefGoogle Scholar
  2. 2.
    Hevner, A.R.: The three cycle view of design science research. Scand. J. Inf. Syst. 19, 87 (2007)Google Scholar
  3. 3.
    Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)CrossRefGoogle Scholar
  4. 4.
    Iivari, J.: A paradigmatic analysis of information systems as a design science. Scand. J. Inf. Syst. 19, 5 (2007)Google Scholar
  5. 5.
    Gregor, S., Jones, D.: The anatomy of a design theory. J. Assoc. Inf. Syst. 8, 312 (2007)Google Scholar
  6. 6.
    Kuechler, W., Vaishnavi, V.: A framework for theory development in design science research: multiple perspectives. J. Assoc. Inf. Syst. 13, 395 (2012)Google Scholar
  7. 7.
    Kuechler, B., Vaishnavi, V.: On theory development in design science research: anatomy of a research project. Eur. J. Inf. Syst. 17, 489–504 (2008)CrossRefGoogle Scholar
  8. 8.
    Ostrowski, L., Helfert, M.: Business process modelling in design science paradigm. In: Helfert, M., Donnellan, B., Kenneally, J. (eds.) EDSS 2013. CCIS, vol. 447, pp. 111–122. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13936-4_10CrossRefGoogle Scholar
  9. 9.
    Ostrowski, Ł., Helfert, M., Hossain, F.: A conceptual framework for design science research. In: Grabis, J., Kirikova, M. (eds.) BIR 2011. LNBIP, vol. 90, pp. 345–354. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24511-4_27CrossRefGoogle Scholar
  10. 10.
    Ostrowski, L., Helfert, M.: Reference model in design science research to gather and model information. In: AMCIS 2012 Proceedings (2012)Google Scholar
  11. 11.
    Ostrowski, L., Helfert, M., Xie, S.: A conceptual framework to construct an artefact for meta-abstract design knowledge in design science research. In: 2012 45th Hawaii International Conference on System Sciences, pp. 4074–4081 (2012)Google Scholar
  12. 12.
    Goldkuhl, G., Lind, M.: A multi-grounded design research process. In: Winter, R., Zhao, J.Leon, Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 45–60. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13335-0_4CrossRefGoogle Scholar
  13. 13.
    Glaser, B., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine, Chicago (1967)Google Scholar
  14. 14.
    Corbin, J.M., Strauss, A.: Grounded theory research: procedures, canons, and evaluative criteria. Qual. Sociol. 13, 3–21 (1990)CrossRefGoogle Scholar
  15. 15.
    Urquhart, C., Lehmann, H., Myers, M.D.: Putting the ‘theory’ back into grounded theory: guidelines for grounded theory studies in information systems. Inf. Syst. J. 20, 357–381 (2010)CrossRefGoogle Scholar
  16. 16.
    Pourzolfaghar, Z., Helfert, M.: Taxonomy of smart elements for designing effective services. In: AMCIS 2017 Proceedings (2017)Google Scholar
  17. 17.
    Knutas, A., Pourzolfaghar, Z., Helfert, M.: A meta-level design science process for integrating stakeholder needs. In: Proceedings of the International Conference on Computer-Human Interaction Research and Applications. Scitepress – Science and Technology Publications, Funchal (2017)Google Scholar
  18. 18.
    Hevner, A., Chatterjee, S.: Design Research in Information Systems. Springer, Boston (2010).  https://doi.org/10.1007/978-1-4419-5653-8CrossRefGoogle Scholar
  19. 19.
    Lee, A.S.: MIS quarterly’s editorial policies and practices. MIS Q. 25, iii–vii (2001)Google Scholar
  20. 20.
    Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1996)Google Scholar
  21. 21.
    Cross, N.: Design/science/research: developing a discipline. In: Fifth Asian Design Conference: International Symposium on Design Science, Su Jeong Dang Printing Company, Seoul (2001)Google Scholar
  22. 22.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)CrossRefGoogle Scholar
  23. 23.
    Goldkuhl, G.: Design theories in information systems-a need for multi-grounding. JITTA: J. Inf. Technol. Theory Appl. 6, 59 (2004)Google Scholar
  24. 24.
    Sun, Y., Kantor, P.B.: Cross-evaluation: a new model for information system evaluation. J. Am. Soc. Inf. Sci. Technol. 57, 614–628 (2006)CrossRefGoogle Scholar
  25. 25.
    Pries-Heje, J., Baskerville, R., Venable, J.: Strategies for design science research evaluation. In: ECIS 2008 Proceedings, pp. 1–12 (2008)Google Scholar
  26. 26.
    Venable, J.: A framework for design science research activities. In: Emerging Trends and Challenges in Information Technology Management: Proceedings of the 2006 Information Resource Management Association Conference, pp. 184–187. Idea Group Publishing (2006)Google Scholar
  27. 27.
    Martin, P.Y., Turner, B.A.: Grounded theory and organizational research. J. Appl. Behav. Sci. 22, 141–157 (1986)CrossRefGoogle Scholar
  28. 28.
    Adams, L.A., Courtney, J.F.: Achieving relevance in IS research via the DAGS framework. In: 2004 Proceedings of the 37th Annual Hawaii International Conference on System Sciences, pp. 10–pp. IEEE (2004)Google Scholar
  29. 29.
    Kinnunen, P., Simon, B.: Building theory about computing education phenomena: a discussion of grounded theory. In: Proceedings of the 10th Koli Calling International Conference on Computing Education Research, pp. 37–42. ACM, New York (2010)Google Scholar
  30. 30.
    Glaser, B.G.: Theoretical Sensitivity: Advances in the Methodology of Grounded Theory. Sociology Press, Mill Valley (1978)Google Scholar
  31. 31.
    Strauss, A.L.: Qualitative Analysis for Social Scientists. Cambridge University Press, Cambridge (1987)CrossRefGoogle Scholar
  32. 32.
    Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Grounded Theory Procedures and Techniques. Sage Publications Inc., Thousand Oaks (1990)Google Scholar
  33. 33.
    Gregor, S.: The nature of theory in information systems. MIS Q. 30, 611–642 (2006)CrossRefGoogle Scholar
  34. 34.
    Van de Ven, A.H.: Engaged Scholarship: A Guide for Organizational and Social Research. Oxford University Press, New York (2007)Google Scholar
  35. 35.
    Urquhart, C.: Grounded Theory for Qualitative Research: A Practical Guide. SAGE, Thousand Oaks (2012)Google Scholar
  36. 36.
    Gregory, R.W.: Design science research and the grounded theory method: Characteristics, differences, and complementary uses. In: Heinzl, A., Buxmann, P., Wendt, O., Weitzel, T. (eds.) Theory-Guided Modeling and Empiricism in Information Systems Research, pp. 111–127. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-7908-2781-1_6CrossRefGoogle Scholar
  37. 37.
    Holmström, J., Ketokivi, M., Hameri, A.-P.: Bridging practice and theory: a design science approach. Decis. Sci. 40, 65–87 (2009)CrossRefGoogle Scholar
  38. 38.
    Merton, R.K.: Social Theory and Social Structure. Simon and Schuster, New York (1968)Google Scholar
  39. 39.
    Walls, J.G., Widmeyer, G.R., El Sawy, O.A.: Building an information system design theory for vigilant EIS. Inf. Syst. Res. 3, 36–59 (1992)CrossRefGoogle Scholar
  40. 40.
    Anthopoulos, L., Janssen, M., Weerakkody, V.: A unified smart city model (USCM) for smart city conceptualization and benchmarking. Int. J. Electron. Gov. Res. (IJEGR) 12, 77–93 (2016)CrossRefGoogle Scholar
  41. 41.
    Booch, G.: Enterprise architecture and technical architecture. IEEE Softw. 27, 96 (2010)Google Scholar
  42. 42.
    Kondepudi, S.N., et al.: Smart sustainable cities analysis of definitions. The ITU-T Focus Group for Smart Sustainable Cities (2014)Google Scholar
  43. 43.
    Ferguson, D., Sairamesh, J., Feldman, S.: Open frameworks for information cities. Commun. ACM 47, 45–49 (2004)CrossRefGoogle Scholar
  44. 44.
    Weisman, R.: An Overview of TOGAF Version 9.1. Publ. by Open Gr. 43 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lero, The Irish Software Research CentreGlasnevin, Dublin 9Ireland
  2. 2.Dublin City UniversityGlasnevin, Dublin 9Ireland

Personalised recommendations