Termites in the Human Diet: An Investigation into Their Nutritional Profile

  • Sampat Ghosh
  • Daniel Getahun Debelo
  • Wonhoon Lee
  • V. Benno Meyer-Rochow
  • Chuleui JungEmail author
  • Aman Dekebo


Many different entomophagous communities of the world consume termites particularly in time of insect’s swarming. We analysed the nutritional composition of the termites that are being used as food and found that protein and fatty acid contents differed between adult and nymphal stages. All the tested amino acids satisfied the level of a nearly ideal protein pattern. Monounsaturated fat predominated among the categories of fatty acids. Calcium and iron contents were found to be relatively high and thus helpful in mitigating some widespread deficiencies prevalent. In the context of rapid population increase and unanticipated climate change the preservation of traditional food is clearly of importance.


Protein Amino acids Fatty acids Minerals Iron Calcium 



In addition to the informants in the field we wish to acknowledge the support received from the Priority Research Centre’s Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2018R1A6A1A03024862).


  1. Abay A, Yalew HW, Tariku A, Gebeye E (2017) Determinants of prenatal anemia in Ethiopia. Arch Public Health 75:51. Scholar
  2. Akutse KS, Owusu EO, Afreh-Nuamah K (2012) Perception of farmers’ management strategies for termites control in Ghana. J Appl Biosci 49:3394–3405Google Scholar
  3. Aluko RE (2012) Functional foods and nutraceuticals. Springer, New YorkCrossRefGoogle Scholar
  4. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington DCGoogle Scholar
  5. Atu UG (1993) Cultural practices for the control of termite (Isoptera) damage to yams and cassava in South-Eastern Nigeria. J Int Pest Manag 39(4):446–462. Scholar
  6. Benishangul Rehabilitation and Development Association (2000) Nutritional Survey in Assosa Zone. AssosaGoogle Scholar
  7. Bennett FJ, Mugalula-Mukiibi AA, Lutwama JSW, Nansubugaet G (1965) An inventory of the Kiganda foods. Uganda J 29:45–53Google Scholar
  8. Bequaert J (1921) Insects as food: how they have augmented the food supply of mankind in early and recent years. Nat Hist J 21:191–200Google Scholar
  9. Bergier E (1941) Peuples entomophages et insects comestibles: étude sur les moeurs de l’homme et de l’insecte. Imprimerie Rullière Frères, AvignonGoogle Scholar
  10. Bodenheimer FS (1951) Insects as human food. W. Junk, The HaugueCrossRefGoogle Scholar
  11. Cardoso CR, Souza MA, Ferro EA Jr, Favoreto S, Pena JD (2004) Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wound. Wound Repair Regen 12(2):235–243. Scholar
  12. Chakravorty J, Ghosh S, Megu K, Jung C, Meyer-Rochow VB (2016) Nutritional and anti-nutritional composition of Oecophylla smaragdina (hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): two preferred edible insects of Arunachal Pradesh. J Asia Pac Entomol 19(3):711–720. Scholar
  13. Chakravorty J, Ghosh S, Meyer-Rochow VB (2013) Comparative survey of entomophagy and entomotherapeutic practices in six tribes of eastern Arunachal Pradesh (India). J Ethnobiol Ethnomed 9:50. Scholar
  14. Christakos S, Dhawan P, Porta A, Mady LJ, Seth T (2011) Vitamin D and intestinal calcium absorption. Mol Cell Endocrinol 347(1–2):25–29. Scholar
  15. Costa-Neto EM (2005) Entomotherapy, or the medicinal use of insects. J Ethnobiol 25(1):93–114.[93:EOTMUO]2.0.CO;2CrossRefGoogle Scholar
  16. de Figueiredo RECR, Vasconcellos A, Policarpo IS, Alves RRN (2015) Edible and medicinal termites: a global review. J Ethnobiol Ethnomed 11:29. Scholar
  17. Debelo DG, Degaga EG (2015) Farmers’ knowledge, perceptions and management practices of termites in the central rift valley of Ethiopia. Afr J Agric Res 10(36):3625–3635. Scholar
  18. deLorgeril M, Salen P (2006) The Mediterranean diet in secondary prevention of coronary heart disease. Clin Invest Med 29(3):154–158Google Scholar
  19. Ekpo KE, Onigbinde AO (2007) Characterization of lipids in winged reproductive of the termite Macrotermesbellicosus. Pak J Nutr 6(3):247–251CrossRefGoogle Scholar
  20. FAO/WHO/UNU (2007) Protein and amino acid requirements in human nutrition. Report of a joint WHO/FAO/UNU Expert Consultation. WHO Technical Report Series No. 935Google Scholar
  21. Flatie T, Gedif T, Asres K, Gebre-Mariam T (2009) Ethnomedical survey of berta ethnic group Assosa zone, Benishangul-Gumuz regional state, mid-West Ethiopia. J Ethnobiol Ethnomed 5:14. Scholar
  22. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299PubMedGoogle Scholar
  23. Ghosh S, Jung C, Meyer-Rochow VB (2016) Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J Asia Pac Entomol 19:487–495CrossRefGoogle Scholar
  24. Ghosh S, Lee SM, Jung C, Meyer-Rochow VB (2017) Nutritional composition of five commercial edible insects in South Korea. J Asia Pac Entomol 20(2):686–694. Scholar
  25. Ghosh S, Meyer-Rochow VB, Jung C (2018) Importance of neglected traditional food to ensure health and Well-being. Int J Food Nutr Sci 8(1):555729. Scholar
  26. Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321. Scholar
  27. Kendie FA, Mekuriaw SA, Dagnew MA (2018) Ethnozoological study of traditional medicinal appreciation of animals and their products among the indigenous people of MetemaWoreda, North-Western Ethiopia. J Ethnobiol Ethnomed 14:37.
  28. Keys A (1970) Coronary heart disease in seven countries. Circulation 14 (Suppl.):S1–211Google Scholar
  29. Kim HS, Jung C (2013) Nutritional characteristics of edible insects as potential food materials. Kor J Apic 28:1–8Google Scholar
  30. Kinyuru JN, Konyole SO, Roos N, Onyango CA, Owino VO, Owuor BO, Estambale BB, Friis H, Aagaard-Hansen J, Kenji GM (2013) Nutrient composition of four species of winged termites consumed in Kenya. J Food Compos Anal 30(2):120–124CrossRefGoogle Scholar
  31. Korean Food Standard Codex (2010) Ministry of Food and Drug Safety (Republic of Korea)Google Scholar
  32. Kotze MJ, van Velden DP, van Ransburg SJ, Erasmus R (2009) Pathogenic mechanisms underlying iron deficiency and iron overload: new insights for clinical application. Electron J Int Fed Clin Chem Lab Med 20(2):108–123Google Scholar
  33. Kremer JM, Lawrence DA, Jubiz W, DiGiacomo R, Rynes R, Bartholomew LE, Sherman M (1990) Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis. Clinical and immunologic effects. Arthritis Rheumatol 33(6):810–820CrossRefGoogle Scholar
  34. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63(5):797S–811SPubMedGoogle Scholar
  35. Livingstone D (1857) Missionary travels and researches in South Africa. John Murray, Albemarte St., LondonGoogle Scholar
  36. Meyer-Rochow VB (1975) Can insects help to ease the problem of world food shortage? Search 6(7):261–262Google Scholar
  37. Meyer-Rochow VB (2017) Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: a comparative survey and review. J Ethnobiol Ethnomed 13:9. Scholar
  38. Nadeau L, Nadeau I, Franklin F, Dunkel F (2014) The potential for entomophagy to address undernutrition. Ecol Food Nutr.
  39. Nonaka K (1996) Ethnoentomology of the central Kalahari san. Afr Stud Monogr 22(Supplementary issue):29–46. Scholar
  40. Nyeko P, Olubayo FM (2005) Participatory assessment of Farmers’ experiences of termite problems in agroforestry in Tororo district, Uganda. Agriculture Research and Extension Network (AgREN) Network Paper No. 143. ISBN 0850037441Google Scholar
  41. Oyarzun SE, Crawshaw GJ, Valdes EV (1996) Nutrition of the Tamandua: I. nutrient composition of termites (Nasutitermesspp.) and stomach contents from wild Tamanduas (Tamandua tetradactyla). Zoo Biol 15(5):509–524.<509::AID-ZOO7>3.0.CO;2-FCrossRefGoogle Scholar
  42. Paoletti MG, Buscardo E, Vanderjagt DJ, Pastuszyn A, Pizzoferrato L, Huang Y-S, Chuang L-T, Glew RH, Millson M, Cerda H (2003) Nutrient content of termites (Syntermessoldiers) consumed by Makiritare Amerindians of the alto Orinoco of Venezuela. Ecol Food Nutr 42(2):177–191. Scholar
  43. Pickering MV, Newton P (1990) Amino acid hydrolysis: old problems, new solutions. LC/GC 8(10):778–781Google Scholar
  44. Rafferty K, Heaney RP (2008) Nutrient effects on the calcium economy: emphasizing the potassium controversy. J Nutr 138(1):166S–171SCrossRefGoogle Scholar
  45. Redford KH, Dorea JG (1984) The nutritional value of invertebrates with emphasis on ants and termites as food for mammals. J Zool 203:385–395CrossRefGoogle Scholar
  46. Sales-Campos H, de Souza PR, Peghini BC, da Silva JS, Cardoso CR (2013) An overview of the modulatory effects of oleic acid in health and disease. Mini Rev Med Chem 13(2):1–10. Scholar
  47. Silow CA (1983) Notes on Ngangela and Nkoya ethnozoology. Ants and termites. Entologiska StudierGoogle Scholar
  48. Sponheimer M, Lee-Thorp J, de Ruiter D, Codron D, Codron J, Baugh AT, Thackeray F (2005) Hominins, sedges, and termites: new carbon isotope data from the Sterkfontein valley and Kruger national park. J Hum Evol 48(3):301–312CrossRefGoogle Scholar
  49. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. Scholar
  50. Turnland JR (2006) Copper. In: Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ (eds) Modern nutrition in health and disease, 10th edn. Lippincott Williams and Wilkins, Philadelphia, PA, pp 286–299Google Scholar
  51. Twine WD, Moshe T, Netshiluvhi TR, Siphugu V (2003) Consumption and direct-use values of savanna bio-resources used by rural households in Mametja, a semi-arid area of Limpopo province, South Africa. South Afr J Sci 99:467–473Google Scholar
  52. Van Huis A (2017) Cultural significance of termites in sub-Saharan Africa. J Ethnobiol Ethnomed 13:8. Scholar
  53. Van Huis A, Itterbeek JV, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible Insects: Future Prospects for Food and Feed Security. FAO Forestry Paper 171Google Scholar
  54. Weaver CM, Heaney RP, Nickel KP, Packard PI (1997) Calcium bioavailability from high oxalate vegetables: Chinese vegetables, sweet potatoes and rhubarb. J Food Sci 62(3):524–525. Scholar
  55. Wilsanand V (2005) Utilization of termite, Odontotermes formosanus by tribes of South India in medicine and food. Explorer 4(2):121–125Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sampat Ghosh
    • 1
    • 2
  • Daniel Getahun Debelo
    • 3
  • Wonhoon Lee
    • 4
  • V. Benno Meyer-Rochow
    • 5
    • 6
  • Chuleui Jung
    • 1
    • 5
    Email author
  • Aman Dekebo
    • 7
  1. 1.Agriculture Science and Technology Research InstituteAndong National UniversityAndongRepublic of Korea
  2. 2.Department of Life SciencesSardar Patel UniversityBalaghatIndia
  3. 3.Program of Applied BiologyAdama Science and Technology UniversityAdamaEthiopia
  4. 4.Department of Plant Medicine and Institute of Agriculture & Life ScienceGyoungsang National UniversityJinjuRepublic of Korea
  5. 5.Department of Plant MedicalsAndong National UniversityAndongRepublic of Korea
  6. 6.Department of Genetics and PhysiologyOulu UniversityOuluFinland
  7. 7.Program of Applied ChemistryAdama Science and Technology UniversityAdamaEthiopia

Personalised recommendations