Nutritional Composition of African Edible Acridians

  • Sévilor KekeunouEmail author
  • Alain Simeu-Noutchom
  • Marcelle Mbadjoun-Nziké
  • Mercy Bih Achu-Loh
  • Patrick Akono-Ntonga
  • Alain Christel Wandji
  • Joseph Lebel Tamesse


The current inadequacy between the accelerated growth of the African population and the availability of nutrients has led us to study the nutritional composition of Acridian. This chapter reviews work on edible Acridians in Africa and assesses their nutritional value and potential impact on malnutrition in Africa. The results show that about 74 Acridians are eaten in Africa, amongst which the nutritional value of Zonocerus variegatus (Linnaeus, 1758), Kraussaria angulifera (Krauss, 1877), Acanthacris ruficornis citrina (Serville, 1839), Locusta migratoria (Linnaeus, 1758), Cyrtacanthacris aeruginosus unicolor (Stoll, 1813), Schistocerca gregaria (Forskål, 1775) and Anacridium melanorhodon (Walker, 1870) were studied. These Acridians have a high protein content with good levels of essential amino acids. They are rich in polyunsaturated fatty acids, vitamins, minerals but poor in carbohydrates. Although their nutrients vary from one species to another, depending on the stages of development and the habitat, edible Acridians can play an important role in the fight against malnutrition in Africa, if they are well exploited.


Africa Foods Acridian Nutritional value Minerals Organic elements 


Conflicts of Interest

The authors declare no conflict of interest.

Author contributions: K.S.; S.N.A.; M.N.M.: conception of review, design, analysis, and interpretation of data, drafting of the manuscript and critical revision. M.B.A.L.; W.A.C.; T.J.L.: critical revision.


  1. Ademolu KO, Idowu AB, Olatunde GO (2010) Nutritional value assessment of variegated grasshopper, Zonocerus variegatus (L.) (Acridoidea: Pygomorphidae), during post-embryonic development. Afr Entomol 18(2):360–364CrossRefGoogle Scholar
  2. Adeoye OT (2014) Eco-diversity of edible insects of Nigeria and its impact on food security. J Biol Life Sci 5(2):175–187CrossRefGoogle Scholar
  3. Adeyeye EI (2005) Amino acid composition of variegated grasshopper, Zonocerus variegatus. Trop Sci 45:141–143CrossRefGoogle Scholar
  4. Adeyeye EI (2011) Fatty acid composition of Zonocerus variegatus, Macrotermes bellicosus and Anacardium occidentalis Kernel. Int J Pharma BioSci 2:135–144Google Scholar
  5. Alamu OT, Amao AO, Nwokedi CI, Oke OA, Lawa IO (2013) Diversity and nutritional status of edible insects in Nigeria: a review. Int J Biodiv Conserv 5(4):215–222Google Scholar
  6. Ali A, Adji Mouhamadou B, Saibou C, Aoudou Y, Tchiegang C (2010) Physio-chemical properties and safety of grasshoppers, important contributors to food security in far north region of Cameroon. Res J Animal Sci 4(5):108–111Google Scholar
  7. Alfrey AC, Le Gendre GR, Kaehny WD (1976) The dialysis encephalopathy syndrome. Possible aluminum intoxication. N Engl J Med 294:184–188PubMedCrossRefGoogle Scholar
  8. Aman P, Michel F, Roel U, Séverin H, Priyanka M, Simon L, Malik H et al (2016) Grasshoppers as a food source? A review. Biotechnol Agron Soc Environ 20(S1):337–352Google Scholar
  9. Badanaro F, Bilabina I, Awaga Kwami L, Sanbena Bassan B, Amevoin K, Amouzou K(2015) Identification et composition nutritionnelle de quelques espèces d'orthoptères consommées au Togo. Vol.03 num.01. ISSN 2424–7235Google Scholar
  10. Bang H, Dyerberg J, Nieslsen A (1971) Plasma lipid and lipoprotein pattern in greenlandic West-coast Eskimos. Lancet, 1143pCrossRefGoogle Scholar
  11. Bani G (1995) Some aspects of entomophagy in the Congo. Food Insect Newsletter 8:4–5Google Scholar
  12. Banjo A, Lawal O, Songonuga E (2006) The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afr J Biotechnol 5(3):298–301Google Scholar
  13. Barreteau D (1999) L’homme et l’animal dans le bassin du lac Tchad. Actes du colloque du rëseua Mega-Tchad, Orléans 15–17. Collection Colloques et Séminaires, no. 00/354. Université Nanterre, Paris, pp 133–169Google Scholar
  14. Bertiere S (2009) Matière grasse laitière et maladies cardiovasculaires : synthèse d’un symposium scientifique international. Chole-doc, Janvier-FévrierGoogle Scholar
  15. Bourdel MI (2012) Troubles nutritionnels chez le sujet âgé. La revue du praticien 62. 8pGoogle Scholar
  16. Bukkens SGF (1997) The nutritional value of edible insects. Ecol Food Nutr 36:287–319CrossRefGoogle Scholar
  17. Bukkens SGF (2005) Insects in the human diet: nutritional aspects. In: Paoletti MG (ed) Ecological implications of minilivestock: role of rodents, frogs, snails, and insects for sustainable development. Science Publishers, Enfield, CT, pp 545–577Google Scholar
  18. Caddan AM (1988) Moisture sorption characteristics of several food fibres. J Food Sci 53(4):1150–1155CrossRefGoogle Scholar
  19. Chakravorty J, Ghosh S, Jung C, Meyer-Rochow VB (2014) Nutritional composition of Chondacris rosea and Brachytrupes orientalis. J Asia Pac Entomol 17(3):407–415CrossRefGoogle Scholar
  20. Chaturvedi VC, Shrivastava R, Upreti RK (2004) Viral infections and trace elements: a complex interaction. Curr Sci 87:1536–1554Google Scholar
  21. Chavanduka DM (1976) Insects as a source of protein to the African. Rhod Sci News 9:217–220Google Scholar
  22. Chiffaud J, Mestre J (1990) Le Criquet Puant Zonocerus Variegatus (Linne, 1758): Essai De Synthèse Bibliographique. CIRAD-PRIFAS, Montpellier, France. 140 ppGoogle Scholar
  23. Courade G (1996) ‘ Entre libéralisation et ajustement structurel : la sécurité alimentaire dans un étau’, Cahiers Agricultures, vol. 5, n° 4, p. 221–227.
  24. Cuvelier C, Cabaraux JF, Dufrasne I, Hornick JL, Istasse L (2004) Acides gras: nomenclature et siurces alimentaires. Annal Med Veter 148:133–140Google Scholar
  25. De Foliart GR (1991) Insect fatty acids: similar to those of poultry and fish in their degree of unsaturation, but higher in the polyunsaturables. Food Insects Newsletter 4:1–4Google Scholar
  26. De Visscher MN (1990) Résultat de l’enquête SAS 1989 sur Zonocerus variegatus (Linne, 1758), Acridien ravageur communément appelé “Criquet puant” ou “Criquet bariole”. PRIFAS, Montpellier, p 25Google Scholar
  27. Demaison L, Moreau D (2002) Dietary n-3 polyunsaturated fatty acids and coronary heart disease-related mortality: a possible mechanism of action. Cell Mol Life Sci 5:463–477CrossRefGoogle Scholar
  28. Desrosier NW (2014) The technology of food preservation. Accessed 07 Aug 2014
  29. Ekop EA, Udoh AL, Akpan PE (2010) Proximate and anti-nutrient composition of four edible insects in Akwa Ibom State, Nigeria. World J Appl Sci Technol 2(2):224–231Google Scholar
  30. Elagba HAM (2015) Determination of nutritive value of the edible migratory locust Locusta migratoria, Linnaeus, 1758 (Orthoptera: Acrididae). Int J Adv Pharm Biol Chem 4(1):144–148Google Scholar
  31. FAO/WHO (1973) Energy and protein requirements. Nutrition meetings report series, no. 52. WHO technical report series, no. 522Google Scholar
  32. Fasoranti JO, Ajiboye DO (1993) Some edible insects of Kwara State Nigeria. Am Entomol 39:113–116CrossRefGoogle Scholar
  33. Finke MD, DeFoliart GR, Benevenga NJ (1989) Use of a four-parameter logistic model to evaluate the quality of proteins from three insect species when fed to rats. J Nutr 119:864–871PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fortin J (2005) L'encyclopédie visuelle des aliments. Editions du Chariot d'Or:688Google Scholar
  35. Gelfand M (1971) Insects. In: Gelfand M (ed) Diet and tradition in African culture. E&S Livingstone, Edinburgh, pp 163–171Google Scholar
  36. Gillingham LG, Harris-Janz S, Jones PJ (2011) Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. J Lipids 46(3):209–228CrossRefGoogle Scholar
  37. Grant CM, Maclver FH, Dawes IW (1997) Glutathion synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Mol Bio Cell 8(9):1699–1707CrossRefGoogle Scholar
  38. Habou ZA, Tougiani A, Seydou R, Toudou A (2015) Une évaluation de Criquets comestibles au Niger : Ornithacris turbida cavroisi (Finot, 1907) Anacridium melanorhodon (Walker, 1870) et Accanthacris ruficornis citrina (Serville, 1838). J Appl Biosci 90:8348–8354CrossRefGoogle Scholar
  39. Harris WV (1940) Some notes on insects as food. Tanganyika Notes Rec 9:45–48Google Scholar
  40. Ha YL, Grimm NK, Pariza MW (1987) Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8:1881–1887PubMedCrossRefGoogle Scholar
  41. Hassan KA, Hassan AB, Eltayeb MM, Osman GA, Hassan NM, Babiker EE (2007) Solubility and functional properties of boiled and fried Sudanese tree locust flour as function of NaCl concentration. J Food Technol 5:201–214Google Scholar
  42. Hercberg S (1988) La carence en fer et nutrition humaine. EMI, Lavoisier. 203pGoogle Scholar
  43. Heaney PR, Nordin BEC (2002) Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. J Am Coll Nutr 21(3):239–244PubMedCrossRefGoogle Scholar
  44. Hujon-Song (2010) Grasshopper systematics: past, present and future. J Orthop Res 19:57–68. Scholar
  45. Idowu AB, Modder WWD (1996) Possible control of the grasshopper stinking, Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae), in Ondo State through human consumption. Nigerian Field 61:7–14Google Scholar
  46. Idowu MA, Idowu AB, Faseki MF (2004) Nutrient composition and processing of variegated grasshopper Zonocerus variegates (L) for human consumption. Nigerian J Entomol 21:65–70Google Scholar
  47. Idowu TA, Wewe N, Amusan AAS (2007) Heavy metal content of the variegated grasshopper Zonocerus variegatus (L) (Orthoptera: Pyrgomorphidae) collected from various locations in Abeokuta, Ogun State. Nigerian J Entomol 24:35–41Google Scholar
  48. INRS (2012) Baryum et composés [archive], Fiche no 125Google Scholar
  49. Insect Food (2014) The nature cricket box. Accessed 20 July 2014
  50. Kekeunou S, Tamesse JL (2016) Consumption of the variegated grasshopper in Africa: importance and threats. J Insects Food Feed 2(3):213–222CrossRefGoogle Scholar
  51. Kekeunou S, Weise S, Messi J, Tamo M (2006) Farmers’ perception on the importance of variegated grasshopper (Zonocerus variegatus (L.)) in the agricultural production systems of the humid forest zone of Southern Cameroon. J Ethnobiol Ethnomed 2:17.
  52. Kelemu S, Niassy S, Torto B, Fiaboe K, Affognon H, Tonnang H, Maniania NK, Ekesi S (2015) African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. J Insects Food Feed 1(2):103–119CrossRefGoogle Scholar
  53. Kemi VE, Kärkkäinen MUM, Lamberg-Allardt CJE (2006) High phosphorus intake acutely and negatively affects calcium and bone metabolism in a dose-dependentmanner in healthy young females. Br J Nutr 96:545–552Google Scholar
  54. Kritchevsky D, Tepper SA, Wright S, Tso P, Czarnecki SK (2000) Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J Am Coll Nutr 19:472–477CrossRefGoogle Scholar
  55. Ladeji O, Solomon M, Hugh M (2003) Proximate chemical analysis of zonocerus variegatus pdf. Nigerian. J Biotechnol 14(1):42–45Google Scholar
  56. Lévy-Luxereau A (1980) Note sur quelques criquets de la région de Maradi (Niger) et leur noms Hausa. J Agric Trad Bot appl 37:263–272.Google Scholar
  57. Length F (2006) The nutritional value of fourteen species of insects in southwestern Nigeria. Afr J Biotechnol 5(3):298–301Google Scholar
  58. Malaisse F (1997) Se Nourrir en Forêt Claire Africaine. Approche Ecologique et Nutritionnelle. Gembloux, Belgique : Presses agronomiques de Gembloux; Wageningen, CTA, Pays Bas, 384 pGoogle Scholar
  59. Malaisse F (2004) Ressources alimentaires non conventionnelles. Tropicultura, spe, 30–36 Edible insects in Eastern and Southern Africa: challenges and opportunities Authors; Muniirah Mbabaziac, Yusuf B Byaruhangaa PhD and Prof. Thomas Omara AlwalabGoogle Scholar
  60. Marieb E, Hoehn K (2014) Anatomie et physiologie humaines : plateforme numérique MonLab-Licence étudiant 60 mois. Pearson Education France, HarlowGoogle Scholar
  61. Martin A (2018) Apports nutritionnels conseillés pour la population française, Edition TEC & Doc 3e éd., 610pGoogle Scholar
  62. Majeti NV, Kumar R (2000) A review of chitin and chitosan applications. React Fun Polymers 46:1–27CrossRefGoogle Scholar
  63. Mbata KJ (1995) Traditional uses of arthropods in Zambia. Food Insect Newsletter 8:1–7Google Scholar
  64. Michaelsen KF, Hoppe C, Roos N, Kaestel P, Stougaard M, Lauritzen L, Mølgaard C, Girma T, Friis H (2009) Choice of foods and ingredients for malnourished children 6 months to 5 years of age. Food Nutr Bull 30(3):343–404CrossRefGoogle Scholar
  65. Mohamed EHA (2015) Determination of nutritive value of the edible migratory locust Locusta migratoria, Linnaeus, 1758 (Orthoptera : Acrididae). Int J Adv 4(1):144–148Google Scholar
  66. Mohamed EHA, Al-Maqbaly R, Mansour HM (2010) Proximate composition, amino acid and mineral contents of five commercial Nile fishes in Sudan. Afr J Food Sci 4(10):650–654Google Scholar
  67. Moseman RF (1994) Chemical disposition of boron in animals and humans. Environ Health Perspect 102:113–117PubMedPubMedCentralGoogle Scholar
  68. Nafisa Mohamed ARAE (2002) Nutritional evaluation and functional properties of flour of boiled and fried sari el lail locust (anacridium melanorhodon. Master of Science in Food Science and Technology, University of Khartoum, 75 ppGoogle Scholar
  69. Nkouka E (1987) Les insectes comestibles dans les sociétés d’Afrique Centrale. Revue Scientifique et Culturelle du CICIBA, Muntu 6:171–178. Nutr. 119; 864-871Google Scholar
  70. Nonaka K (1996) Ethnoentomology of the Central Kalahari San. African Study Monographs, 22:29–46Google Scholar
  71. Olaofe O, Adeyemi F, Adediran G (1994) Amino acid and mineral composition and functional properties of some oil seeds. J Agric Food Chem 42:878–884CrossRefGoogle Scholar
  72. Olaofe O, Arogundade LA, Adeyeye EI, Falusi OM (1998) Composition and food properties of the variegated grasshoppers, Zonocerus variegatus. AGRIS 38(4):233–237Google Scholar
  73. Oonincx DG, van Itterbeeck J, Heetkamp MJ, van den Brand H, van Loon JJ, van Huis A (2010) An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One 5(12):e14445. Scholar
  74. Oonincx DGAB, van der Poel AFB (2011) Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol 30:9–16. USDA database ( Release 23PubMedPubMedCentralGoogle Scholar
  75. Orr B (1986) Improvement of women’s health linked to reducing widespread anemia. Int Health News 7(3)Google Scholar
  76. Peters JP, Elliot JM (1983) Effet of vitamin B12 status on performance of the lactating ewe and gluconeogenesis from propionate. J Dairy Sci 66:1917–1925PubMedCrossRefGoogle Scholar
  77. Quin PJ (1959) Food and feeding habits of the pedi with special reference to identification, classification, preparation and nutritive value of the respective foods. Witwatersrand University Press, Johannesburg, p 278Google Scholar
  78. Ramos-Elorduy JB, Pino Moreno JM, Martínez Camacho VH (2012) Could grasshoppers be a nutritive meal? Food Nutr Sci 3:164–175Google Scholar
  79. Rumpold BA, Schlüter OK (2013) Potential and challenges of insects as an innovative source for food and feed production. Innov Food Sci Emerg Technol 17:1–11CrossRefGoogle Scholar
  80. Ros E (2003) Dietary cis-monounsaturated fatty acids and metabolic control in type 2 diabetes. Am J Clin Nutr 78:617–625CrossRefGoogle Scholar
  81. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Magnesium: an update on physiological, clinical, and analytical aspects. Clinica Chimica Acta 294:1–26CrossRefGoogle Scholar
  82. Saris A, Morrison J (2010) Food security in Africa: market and trade policy for staple foods in eastern and southern Africa. FAO and Edward Elgar, Northampton, MA, 434 pp.Google Scholar
  83. Solomon M, Ladeji O, Umoru H (2008) Nutritional evaluation of the giant grasshopper (Zonocerus variegatus) protein and the possible effects of its high dietary fibre on amino acids and mineral bioavailability. Afr J Food Agric Nutr Dev 8(2):238–248Google Scholar
  84. Stadlmayr B, Charrondiere UR, Enujiugha VN, Bayili RG, Fagbohoun EG, Samb B, Baddy P, Barikmo I, Ouattara F, Oshaug A, Akinyele I, Annor GA, Bomfeh K, Ene-Obong H, Smith IF, Thiam I, Burlingame B (2012) West African food composition table. FAO, Rome. 171 pGoogle Scholar
  85. Talwar GP, Srivastava LM, Mudgil KD (1989) Textbook of biochemistry and human biology. Prentice Hall of India Private Limited, New DelhiGoogle Scholar
  86. Tamesse JL, Kekeunou S, Tchatchouang LJ, Ndegue OLM, Aissatou LM, Tomboouck D, Youssa B (2016) Insects as Food, traditional medecin and cultural rites in the west and south regions of Cameroon. J Insect Food feed 2(3):153–160CrossRefGoogle Scholar
  87. Tchibozo S, Malaisse F, Mergen P (2016) Insectes consommés par l’Homme en Afrique occidentale francophone Edible insects by Human in Western French Africa. Geo-Eco-Trop 40-2:105–114Google Scholar
  88. Teffo LS, Toms RB, Eloff JN (2007) Preliminary data on the nutritional composition of the edible stink-bug, Encosternum delegorguei Spinola, consumed in Limpopo province, South Africa. South Afr J Sci 103:434–436Google Scholar
  89. Tome D (2009) Besoins en protéines et en acides aminés & qualité des protéines alimentaires. Chole-doc 111 Janvier-FevrierGoogle Scholar
  90. United Nations (2011) World Population Prospects: The 2010 Revision. New York. Department of Economic and Social Affairs, Population DivisionGoogle Scholar
  91. Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G and Vantomme P (2014) Edible insects: future prospects for food and feed security. FAO forestry paper no. 171. FAO: Rome. 230–235Google Scholar
  92. Van Huis A (2003) Insects as food in sub-saharan Africa. Insect Sci Appl 23(3):163–185Google Scholar
  93. Véronique B (1997) Les insectes, une ressource alimentaire d’avenir. Insectes 10 N° 106–1997Google Scholar
  94. Verkerk MC, Tramper J, Van Trijp JCM, Martens DE (2007) Insect cells for human food. Biotechnol Adv 25:198–202PubMedCrossRefGoogle Scholar
  95. Weiping Y, Junna L, Huaqing L, Biyu L (2017) Nutritional Value, Food Ingredients, Chemical and Species Composition of Edible Insects in China. Chapter from the book Future Foods 29pGoogle Scholar
  96. Womeni HM, Michel L, Tiencheu B, Tchouanguep MF, Pierre V, Jacques F, Michel P (2009) Oils of insects and larvae consumed in Africa: potential sources of polyunsaturated fatty acids. OCL 16(4):230–235CrossRefGoogle Scholar
  97. Zakari AH, Abasse T, Ramatou S, Adam T (2015) Une évaluation de Criquets comestibles au Niger: Ornithacris turbida cavroisi (Finot, 1907), Anacridium melanorhodon (Walker, 1870) et Accanthacris ruficornis citrina (Serville, 1838). J Appl Biosci 90:8348–8354. ISSN 1997-5902CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sévilor Kekeunou
    • 1
    Email author
  • Alain Simeu-Noutchom
    • 1
  • Marcelle Mbadjoun-Nziké
    • 1
  • Mercy Bih Achu-Loh
    • 2
  • Patrick Akono-Ntonga
    • 3
  • Alain Christel Wandji
    • 1
  • Joseph Lebel Tamesse
    • 4
  1. 1.Laboratory of Zoology, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
  2. 2.Laboratory for Food Science and Metabolism, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
  3. 3.Laboratory of Animal Biology and Physiology, Faculty of ScienceUniversity of DoualaDoualaCameroon
  4. 4.Laboratory of Zoology, Higher Teachers Training CollegeUniversity of Yaounde IYaoundeCameroon

Personalised recommendations