Advertisement

Some Combinatorial Coincidences for Standard Representations of Affine Lie Algebras

  • Mirko PrimcEmail author
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 37)

Abstract

In this note we explain, in terms of finite dimensional representations of Lie algebras \(\mathfrak {sp}_{2\ell }\subset \mathfrak {sl}_{2\ell }\), a combinatorial coincidence of difference conditions in two constructions of combinatorial bases for standard representations of symplectic affine Lie algebras.

Keywords

Affine Lie algebras Standard representations Combinatorial bases Difference conditions for colored partitions 

Notes

Acknowledgements

This work is partially supported by the Croatian Science Foundation under the Project 2634 and by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund—the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

References

  1. 1.
    Adamović, D., Perše, O.: The vertex algebra \(M(1)^{+}\) and certain affine vertex algebras of level \(-1\), SIGMA 8, 040 (2012) 16 pGoogle Scholar
  2. 2.
    Baranović, I.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level 2 standard modules for \(D_4^{(1)}\). Commun. Algebra 39, 1007–1051 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baranović, I., Primc, M., Trupčević, G.: Bases of Feigin-Stoyanovsky’s type subspaces for \(C_\ell ^{(1)}\). Ramanujan J. 45, 265–289 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bourbaki, N.: Algèbre Commutative. Hermann, Paris (1961)zbMATHGoogle Scholar
  5. 5.
    Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Ramanujan recursion and intertwining operators. Commun. Contemp. Math. 5, 947–966 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators. Ramanujan J. 12, 379–397 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dong, C., Mason, G.: On quantum Galois theory. Duke Math. J. 86, 305–321 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Feigin, B., Jimbo, M., Loktev, S., Miwa, T., Mukhin, E.: Bosonic formulas for (k, l)-admissible partitions. Ramanujan J. 7, 485–517; Addendum to ‘Bosonic formulas for (k, l)-admissible partitions’. Ramanujan J. 7(2003), 519–530 (2003)Google Scholar
  9. 9.
    Feigin, B., Kedem, R., Loktev, S., Miwa, T., Mukhin, E.: Combinatorics of the \(\widehat{\mathfrak{s}l}_2\) spaces of coinvariants. Transform. Groups 6, 25–52 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Stoyanovsky, A.V., Feigin, B.L.: Functional models of the representations of current algebras, and semi-infinite Schubert cells, (Russian) Funktsional. Anal. i Prilozhen. 28(1), 68-90, 96 (1994); translation in Funct. Anal. Appl. 28(1), 55-72 (1994); preprint Feigin, B., Stoyanovsky, A.: Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, arXiv:hep-th/9308079, RIMS 942
  11. 11.
    Feigin, E.: The PBW filtration. Represent. Theory 13, 165–181 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  13. 13.
    Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Affine crystals and vertex models. Int. J. Modern Phys. A 7, 449-484 (Suppl. 1A, Proceedings of the RIMS Research Project 1991, “Infinite Analysis”, World Scientific, Singapore, (1992))Google Scholar
  14. 14.
    Lepowsky, J., Milne, S.: Lie algebraic approaches to classical partition identities. Adv. Math. 29, 15–59 (1978)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lepowsky, J., Primc, M.: Structure of the Standard Modules for the Affine Lie Algebra \(A_1^{(1)}\), Contemporary Mathematics vol. 46. American Mathematical Society, Providence (1985)Google Scholar
  16. 16.
    Lepowsky, J., Wilson, R.L.: The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent. Math. 77, 199–290; II: The case \(A_1^{(1)}\), principal gradation. Invent. Math. 79(1985), 417–442 (1984)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Meurman, A., Primc, M.: Vertex operator algebras and representations of affine Lie algebras. Acta Appl. Math. 44, 207–215 (1996)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Meurman, A., Primc, M.: Annihilating fields of standard modules of \({sl}(2,\mathbb{C})\,\widetilde{}\) and combinatorial identities. Memoirs Am. Math. Soc. 137(652) (1999)Google Scholar
  19. 19.
    Primc, M.: Vertex operator construction of standard modules for \(A_n^{(1)}\). Pacific J. Math. 162, 143–187 (1994)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Primc, M.: Basic representations for classical affine Lie algebras. J. Algebra 228, 1–50 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Primc, M.: \((k,r)\)-admissible configurations and intertwining operators Lie algebras, vertex operator algebras and their applications. pp. 425-434. Contemporary Mathematics, vol. 442. American Mathematical Society, Providence (2007)Google Scholar
  22. 22.
    Primc, M.: Combinatorial bases of modules for affine Lie algebra \(B_2^{(1)}\). Cent. Eur. J. Math. 11, 197–225 (2013)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Primc, M., Šikić, T.: Combinatorial bases of basic modules for affine Lie algebras \(C_n^{(1)}\). J. Math. Phys. 57, 1–19 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Primc, M., Šikić, T.: Leading terms of relations for standard modules of \(C_{n}^{(1)}\). arXiv:math/1506.05026 (To appear in Ramanujan J)
  25. 25.
    Siladić, I.: Twisted \({\mathfrak{s}l}(3,\mathbb{C})\,\widetilde{}\) -modules and combinatorial identities, Glasnik Matematički 52, 53-77 (2017). arXiv:math/0204042MathSciNetCrossRefGoogle Scholar
  26. 26.
    Trupčević, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level \(1\) standard \(\tilde{\mathfrak{s}l}(\ell +1,\mathbb{C})\)-modules. Comm. Algebra 38, 3913–3940 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Trupčević, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of higher-level standard \(\tilde{\mathfrak{s}l}(\ell +1,\mathbb{C})\)-modules. J. Algebra 322, 3744–3774 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Trupčević, G.: Bases of standard modules for affine Lie algebras of type \(C_\ell ^{(1)}\). Comm. Algebra 46, 3663–3673 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ZagrebZagrebCroatia

Personalised recommendations