Advertisement

Kostant Pairs of Lie Type and Conformal Embeddings

  • Dražen Adamović
  • Victor G. Kac
  • Pierluigi Möseneder Frajria
  • Paolo PapiEmail author
  • Ozren Perše
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 37)

Abstract

We deal with some aspects of the theory of conformal embeddings of affine vertex algebras, providing a new proof of the Symmetric Space Theorem and a criterion for conformal embeddings of equal rank subalgebras. We study some examples of embeddings at the critical level. We prove a criterion for embeddings at the critical level which enables us to prove equality of certain central elements.

Keywords

Symmetric space theorem Conformal embedding Pair of Lie type Vertex operator algebras 

Notes

Acknowledgements

Dražen Adamović and Ozren Perše are partially supported by the Croatian Science Foundation under the project 2634 and by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund–the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

References

  1. 1.
    Adamović, D., Perše, O.: The vertex algebra \(M(1)^+\) and certain affine vertex algebras of level \(-1\). SIGMA 8, 040 (2012), 16 ppGoogle Scholar
  2. 2.
    Adamović, D., Perše, O.: Some general results on conformal embeddings of affine vertex operator algebras. Algebr. Represent. Theory 16(1), 51–64 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Adamović, D., Perše, O.: Fusion rules and complete reducibility of certain modules for affine Lie algebras. J. Algebra Appl. 13, 1350062 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Adamović, D., Kac, V.G., Moseneder Frajria, P., Papi, P., Perše, O.: Finite vs infinite decompositions in conformal embeddings. Commun. Math. Phys. 348, 445–473 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Adamović, D., Kac, V.G., Moseneder Frajria, P., Papi, P., Perše, O.: Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions. Japanese J. Math. 12(2), 261–315 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Adamović, D., Kac, V.G., Moseneder Frajria, P., Papi, P., Perše, O.: On the classification of non-equal rank affine conformal embeddings and applications. Sel. Math. New Ser. 24, 2455–2498 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Arakawa, T.: Representation theory of \(W\)–algebras and Higgs branch conjecture. arXiv:1712.07331, to appear in Proceedings of the ICM (2018)
  8. 8.
    Arcuri, R.C., Gomez, J.F., Olive, D.I.: Conformal subalgebras and symmetric spaces. Nucl. Phys. B 285(2), 327–339 (1987)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cellini, P., Kac, V.G., Möseneder Frajria, P., Papi, P.: Decomposition rules for conformal pairs associated to symmetric spaces and abelian subalgebras of \(\mathbb{Z}_2\)-graded Lie algebras. Adv. Math. 207, 156–204 (2006)Google Scholar
  10. 10.
    Daboul C.: Algebraic proof of the symmetric space theorem. J. Math. Phys. 37(7), 3576–3586 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gaiotto, D.: Twisted compactifications of 3d N\(=\)4 theories and conformal blocks. arXiv:1611.01528
  13. 13.
    Goddard, P., Nahm, W., Olive, D.: Symmetric spaces, Sugawara energy momentum tensor in two dimensions and free fermions. Phys. Lett. B 160, 111–116MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kac, V.G.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)zbMATHCrossRefGoogle Scholar
  15. 15.
    Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)zbMATHCrossRefGoogle Scholar
  16. 16.
    Kac, V.G., Sanielevici, M.: Decomposition of representations of exceptional affine algebras with respect to conformal subalgebras. Phys. Rev. D 37(8), 2231–2237 (1988)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kac, V.G., Wakimoto, M.: Modular and conformal invariance constraints in representation theory of affine algebras. Adv. Math. 70, 156–236 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kac, V.G., Möseneder Frajria, P., Papi, P.: Dirac operators and the very strange formula for Lie superalgebras. In: Papi, P., Gorelik, M. (eds.) Advances in Lie Superalgebras. Springer INdAM Series, vol. 7. Springer, Berlin (2014)zbMATHCrossRefGoogle Scholar
  19. 19.
    Kostant, B.: A cubic Dirac operator and the emergence of Euler number multiplets for equal rank subgroupps. Duke Math. J. 100(3), 447–501 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Moore, G.W., Tachikawa, Y.: On 2d TQFTs whose values are holomorphic symplectic varieties. In: Proceeding of Symposia in Pure Mathematics, vol. 85 (2012). arXiv:1106.5698
  21. 21.
    Schellekens, A.N., Warner, N.P.: Conformal subalgebras of Kac-Moody algebras. Phys. Rev. D (3) 34(10), 3092–3096 (1986)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tachikawa, Y.: On some conjectures on VOAs, preprintGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dražen Adamović
    • 1
  • Victor G. Kac
    • 2
  • Pierluigi Möseneder Frajria
    • 3
  • Paolo Papi
    • 4
    Email author
  • Ozren Perše
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Department of MathematicsMITCambridgeUSA
  3. 3.Polo regionale di ComoPolitecnico di MilanoComoItaly
  4. 4.Dipartimento di MatematicaSapienza Università di RomaRomaItaly

Personalised recommendations