Advertisement

Direct Detection and Measurement of Nuchal Translucency with Neural Networks from Ultrasound Images

  • Tianchi LiuEmail author
  • Mengdi Xu
  • Ziyu Zhang
  • Changping Dai
  • Haiyu Wang
  • Rui Zhang
  • Lei Shi
  • Shuang Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11798)

Abstract

Nuchal Translucency (NT) in ultrasound images are commonly used to detect genetic disorder in fetuses. Due to lack of distinctive local features around NT region, existing NT detection methods first model some other prominent body parts, such as the fetal head. However, explicit detection of other body parts requires additional annotation, development and processing costs. It may also introduce cascading error in cases of unclear head location or non-standard head-NT relations. In this work, we design a convolutional neural network with fully connected layers to detect NT region directly. Furthermore, we apply U-Net with customized architecture and loss function to obtain precise NT segmentation. Finally, NT thickness measurement is calculated using principal component analysis. A dataset containing 770 ultrasound images were used for training and evaluation. Extensive experimental results show that our direct approach automatically detects and measures NT with promising performance.

References

  1. 1.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. PAMI 39(12), 2481–2495 (2017)CrossRefGoogle Scholar
  2. 2.
    Deng, Y., Wang, Y., Chen, P.: Automated detection of fetal nuchal translucency based on hierarchical structural model. In: CBMS, pp. 78–84. IEEE (2010)Google Scholar
  3. 3.
    He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imageNet classification. In: ICCV, pp. 1026–1034 (2015)Google Scholar
  4. 4.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46493-0_38CrossRefGoogle Scholar
  5. 5.
    Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)Google Scholar
  6. 6.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
  7. 7.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)Google Scholar
  8. 8.
    Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571. IEEE (2016)Google Scholar
  9. 9.
    Nie, S., Yu, J., Chen, P., Wang, Y., Guo, Y., Zhang, J.Q.: Automatic measurement of fetal nuchal translucency from three-dimensional ultrasound data. In: EMBC, pp. 3417–3420. IEEE (2017)Google Scholar
  10. 10.
    Park, J.H., Sofka, M., Lee, S.M., Kim, D.Y., Zhou, S.K.: Automatic nuchal translucency measurement from ultrasonography. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 243–250. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40760-4_31CrossRefGoogle Scholar
  11. 11.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  12. 12.
    Sciortino, G., Tegolo, D., Valenti, C.: Automatic detection and measurement of nuchal translucency. Comput. Biol. Med. 82, 12–20 (2017)CrossRefGoogle Scholar
  13. 13.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  14. 14.
    Souka, A.P., Krampl, E., Bakalis, S., Heath, V., Nicolaides, K.H.: Outcome of pregnancy in chromosomally normal fetuses with increased nuchal translucency in the first trimester. Ultrasound Obstet. Gynecol. 18(1), 9–17 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tianchi Liu
    • 1
    Email author
  • Mengdi Xu
    • 1
  • Ziyu Zhang
    • 1
  • Changping Dai
    • 2
  • Haiyu Wang
    • 2
  • Rui Zhang
    • 2
  • Lei Shi
    • 3
  • Shuang Wu
    • 1
  1. 1.YITU TechnologyShanghaiChina
  2. 2.Guangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
  3. 3.Hangzhou YITU Healthcare TechnologyHangzhouChina

Personalised recommendations