Advertisement

A 3D Massive MIMO Channel Model for Vehicle-to-Vehicle Communication Environments

  • Hao Jiang
  • Guan Gui
Chapter
Part of the Wireless Networks book series (WN)

Abstract

This chapter presents 3-D vehicle massive MIMO antenna array model for V2V communication environments. A spherical wavefront is assumed in the proposed model instead of the plane wavefront assumption used in the conventional MIMO channel model. Using the proposed V2V channel model, we first derive the closed-form expressions for the joint and marginal probability density functions of the angle of departure at the transmitter and angle of arrival at the receiver in the azimuth and elevation planes. We additionally analyze the time and frequency cross-correlation functions for different propagation paths. In the proposed model, we derive the expression of the Doppler spectrum due to the relative motion between the mobile transmitter and mobile receiver. The results show that the proposed 3-D channel model is in close agreement with previously reported results, thereby validating the generalization of the proposed model.

Keywords

3-D vehicle massive MIMO antenna array model V2V communication environments Spherical wavefront Plane wavefront MIMO channel model 

References

  1. 1.
    G.J. Foschini, M.J. Gans, On limits of wireless communications in a fading environment when using multiple antennas. Wirel. Pers. Commun. 6(3), 311–335 (1998)CrossRefGoogle Scholar
  2. 2.
    P.P. Tayade, V.M. Rohokale, Enhancement of spectral efficiency, coverage and channel capacity for wireless communication towards 5G, in International Conference on Pervasive Computing (ICPC), Pune (2015), pp. 1–5Google Scholar
  3. 3.
    E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Patcharamaneepakorn, et al., Spectral, energy, and economic efficiency of 5G multicell massive MIMO systems with generalized spatial modulation. IEEE Trans. Veh. Technol. 65(12), 9715–9731 (2016)CrossRefGoogle Scholar
  5. 5.
    C.X. Wang, X. Cheng, D.I. Laurenson, Vehicle-to-vehicle channel modeling and measurements: recent advances and future challenges. IEEE Commun. Mag. 47(11), 96–103 (2009)CrossRefGoogle Scholar
  6. 6.
    L. Wood, W.S. Hodgkiss, Understanding the Weichselberger model: a detailed investigation, in IEEE Military Communications Conference, San Diego, CA (2008), pp. 1–7Google Scholar
  7. 7.
    S.K. Yong, J.S. Thompson, Three-dimensional spatial fading correlation models for compact MIMO receivers. IEEE Trans. Commun. 4(6), 2856–2869 (2005)Google Scholar
  8. 8.
    F. Harabi, A. Gharsallah, S. Marcos, Three-dimensional antennas array for the estimation of direction of arrival. IET Microw. Antennas Propag. 3(5), 843–849 (2009)CrossRefGoogle Scholar
  9. 9.
    J. Zhou, H. Jiang, H. Kikuchi, Performance of uniform concentric circular arrays in a three-dimensional spatial fading channel model. Wirel. Pers. Commun. 83(4), 2949–2963 (2015)CrossRefGoogle Scholar
  10. 10.
    K. Mammasis, R.W. Stewart, J.S. Thompson, Spatial fading correlation model using mixtures of Von Mises Fisher distributions. IEEE Trans. Wirel. Commun. 8(4), 2046–2055 (2009)CrossRefGoogle Scholar
  11. 11.
    S.Y. Cho, J. Kim, W.Y. Yang, MIMO-OFDM Wireless Communications with MATLAB (Wiley-IEEE Press, Singapore, 2010)CrossRefGoogle Scholar
  12. 12.
    R.B. Ertel, J.H. Reed, Angle and time of arrival statistics for circular and elliptical scattering models. IEEE J. Sel. Areas Commun. 17(11), 1829–1840 (1999)CrossRefGoogle Scholar
  13. 13.
    P. Petrus, J.H. Reed, T.S. Rappaport, Geometrical-based statistical macrocell channel model for mobile environments. IEEE Trans. Commun. 50(3), 495–502 (2002)CrossRefGoogle Scholar
  14. 14.
    A. Abdi, M. Kaveh, A space-time correlation model for multielement antenna systems in mobile fading channels. IEEE J. Sel. Areas Commun. 20(3), 550–560 (2002)CrossRefGoogle Scholar
  15. 15.
    X. Cheng, C.X. Wang, D.I. Laurenson, S. Salous, A.V. Vasilakos, An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels. IEEE Trans. Wirel. Commun. 8(9), 4824–4835 (2009)CrossRefGoogle Scholar
  16. 16.
    H. Jiang, Z.C. Zhang, J. Dang, L. Wu, Analysis of geometric multi-bounced virtual scattering channel model for dense urban street environments. IEEE Trans. Veh. Technol. 66(3), 1903–1912 (2017)CrossRefGoogle Scholar
  17. 17.
    S.J. Nawaz, B.H. Qureshi, N.M. Khan, A generalized 3-D scattering model for a macrocell environment with a directional antenna at the BS. IEEE Trans. Veh. Technol. 59(7), 3193–3204 (2010)CrossRefGoogle Scholar
  18. 18.
    H. Jiang, J. Zhou, H. Kikuchi, Angle and time of arrival statistics for a 3-D pie-cellular-cut scattering channel model. Wirel. Pers. Commun. 78(2), 851–865 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Zhou, H. Jiang, H. Kikuchi, Generalised three-dimensional scattering channel model and its effects on compact multiple-input and multiple-output antenna receiving systems. IET Commun. 9(18), 2177–2187 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Yuan, C.X. Wang, Y. He, M.M. Alwakeel, e.H.M. Aggoune, 3D wideband non-stationary geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels. IEEE Trans. Wirel. Commun. 14(12), 6883–6895 (2015)CrossRefGoogle Scholar
  21. 21.
    S.C. Kwon, G.L. Stuber, A.V. Lopez, J. Papapolymerou, Geometrically based statistical model for polarized body-area-network channels. IEEE Trans. Veh. Technol. 62(8), 3518–3530 (2013)CrossRefGoogle Scholar
  22. 22.
    S.C. Kwon, G.L. Stuber, Cross-polarization discrimination in vehicle-to-vehicle channels: geometry-based statistical modeling, in IEEE Global Telecommunications Conference GLOBECOM, Miami, FL, December (2010), pp. 1–5Google Scholar
  23. 23.
    M. Boban, T.T.V. Vinhoza, M. Ferreira, J. Barros, O.K. Tonguz, Impact of vehicles as obstacles in vehicular ad hoc networks. IEEE J. Sel. Areas Commun. 29(1), 15–28 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Paier, et al., Non-WSSUS vehicular channel characterization in highway and urban scenarios at 5.2 GHz using the local scattering function, in International ITG Workshop on Smart Antennas, Vienna, Austria, February (2008), pp. 9–15Google Scholar
  25. 25.
    T. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(1), 3590–3600 (2010)CrossRefGoogle Scholar
  26. 26.
    X. Gao, O. Edfors, F. Rusek, F. Tufvesson, Massive MIMO performance evaluation based on measured propagation data. IEEE Trans. Wirel. Commun. 14(7), 3899–3911 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Payami, F. Tufvesson, Channel measurements and analysis for very large array systems at 2.6 GHz, in 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, March (2012), pp. 433–437Google Scholar
  28. 28.
    T. Zwick, C. Fischer, W. Wiesbeck, A stochastic multipath channel model including path directions for indoor environments. IEEE J. Sel. Areas Commun. 20(6), 1178–1192 (2002)CrossRefGoogle Scholar
  29. 29.
    H. Xiao, A.G. Burr, L. Song, A time-variant wideband spatial channel model based on the 3GPP model, in IEEE Vehicular Technology Conference (VTC), Montreal, QC, September (2006), pp. 1–5Google Scholar
  30. 30.
    D.S. Baum, J. Hansen, J. Salo, An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM), in 61st Vehicular Technology Conference, Stockholm, Sweden, May (2005), pp. 3132–3136Google Scholar
  31. 31.
    F. Bohagen, P. Orten, G.E. Oien, Design of optimal high-rank line-of-sight MIMO channels. IEEE Trans. Wirel. Commun. 6(4), 1420–1425 (2007)CrossRefGoogle Scholar
  32. 32.
    F. Bohagen, P. Orten, G.E. Oien, On spherical vs. plane wave modeling of line-of-sight MIMO channels. IEEE Trans. Commun. 57(3), 841–849 (2009)CrossRefGoogle Scholar
  33. 33.
    S.B. Wu, C.X. Wang, H. Aggoune, Non-stationary wideband channel models for massive MIMO systems, in Proceedings of WSCN, Jeddah, Saudi Arabia, December (2013), pp. 1–8Google Scholar
  34. 34.
    S. Wu, C. Wang, H. Haas, e.M. Aggoune, M.M. Alwakeel, B. Ai, A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans. Wirel. Commun. 14(3), 1434–1446 (2015)CrossRefGoogle Scholar
  35. 35.
    S.B. Wu, C.X. Wang, E.-H.M. Aggoune, A non-stationary 3-d wideband twin-cluster model for 5G massive MIMO channels. IEEE J. Sel. Areas Commun. 32(6), 1207–1218 (2014)CrossRefGoogle Scholar
  36. 36.
    X. Cheng, C.X. Wang, B. Ai, H. Aggoune, Envelope level crossing rate and average fade duration of nonisotropic vehicle-to-vehicle Ricean fading channels. IEEE Trans. Intell. Trans. Sys. 15(1), 62–72 (2014)CrossRefGoogle Scholar
  37. 37.
    X. Cheng, C.X. Wang, B. Ai, Envelope level crossing rate and average fade duration of nonisotropic vehicle-to-vehicle Ricean fading channels. IEEE Trans. Intell. Transp. Syst. 15(1), 62–72 (2013)CrossRefGoogle Scholar
  38. 38.
    Q. Zhan, V.K.V. Gottumukkala, A. Yokoyama, H. Minn, A V2V communication system with enhanced multiplicity gain, in Proceedings of the IEEE GLOBECOM Workshop Vehicular Network Evolution, Atlanta, GA, December (2013), pp. 1326–1332Google Scholar
  39. 39.
    S.K. Yong, J.S. Thompson, The effect of various channel conditions on the performance of different antenna array architectures, in IEEE 58th Vehicular Technology Conference, VTC 2003-Fall, Orlando, FL, October (2003), pp. 198–202Google Scholar
  40. 40.
    M. Riaz, N.M. Khan, S.J. Nawaz, A generalized 3-D scattering channel model for spatiotemporal statistics in mobile-to-mobile communication environment. IEEE Trans. Veh. Technol. 64(10), 4399–4410 (2015)CrossRefGoogle Scholar
  41. 41.
    S.R. Saunders, A. Aragon-Zavala, Antennas and propagation for wireless communication systems, 2nd edn. (Wiley, West Sussex, 2007)Google Scholar
  42. 42.
    A.G. Zajic, G.L. Stuber, T.G. Pratt, S.T. Nguyen, Wideband MIMO mobile-to-mobile channels: geometry-based statistical modeling with experimental verification. IEEE Trans. Veh. Technol. 58(2), 517–534 (2009)CrossRefGoogle Scholar
  43. 43.
    A. Ghazal, C.X. Wang, B. Ai, D. Yuan, H. Haas, A non-stationary wideband MIMO channel model for high-mobility intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 16(2), 885–897 (2015)Google Scholar
  44. 44.
    L. Bai, C.X. Wang, S. Wu, H. Wang, Y. Yang, A 3-D wideband multi-confocal ellipsoid model for wireless MIMO communication channels, in IEEE International Conference on Communications (ICC), Kuala Lumpur (2016), pp. 1–6Google Scholar
  45. 45.
    J. Chen, S. Wu, S. Liu, C. Wang, W. Wang, On the 3-D MIMO channel model based on regular-shaped geometry-based stochastic model, in International Symposium on Antennas and Propagation (ISAP), Hobart, TAS, November (2015), pp. 1–4Google Scholar
  46. 46.
    N. Avazov, M. Patzold, A geometric street scattering channel model for car-to-car communication systems, in International Conference on Advanced Technologies for Communications (ATC 2011), Da Nang, Vietnam, August (2011), pp. 224–230Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hao Jiang
    • 1
  • Guan Gui
    • 2
  1. 1.College of Electronic and Information EngineeringNanjing University of Information Science and TechnologyNanjingChina
  2. 2.College of Telecommunications and Information EngineeringNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations