Effect of Sulfate and Nitrate Anions on the Oxidative Degradation of Tetrachloroethylene by Magnetite with Glutathione

  • Nur Dalila MohamadEmail author
  • Amnorzahira Amir
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 53)


This work demonstrates the effect of sulfate \( {({\text{SO}}_{4}}^{2 - } ) \) and nitrate \( {({\text{NO}}_{3}}^{ - } ) \) anions during the oxidative degradation of tetrachloroethylene (PCE) by magnetite (Fe3O4) with glutathione. The enhanced of oxidative degradation of PCE was achieved due to the presence of \( {{\text{SO}}_{4}}^{2 - } \) and \( {{\text{NO}}_{3}}^{ - } \) anions to form reactive radicals in the Fe3O4-glutathione system. Kinetic rate constants for the oxidative degradation of PCE were accelerated 1.8 and 2.7 times higher, from 0.020 min−1 in the PCE-Fe3O4-glutathione to 0.036 and 0.054 min−1 in the PCE-Fe3O4-glutathione-\( {{\text{NO}}_{3}}^{ - } \) and PCE-Fe3O4-glutathione-\( {{\text{SO}}_{4}}^{2 - } \) systems respectively. The experimental results reveal that the oxidative degradation kinetic rate constant of PCE are strongly dependent on the presence of \( {{\text{SO}}_{4}}^{2 - } \) and \( {{\text{NO}}_{3}}^{ - } \) radicals. Kinetic oxidative degradation rate constant of PCE increased proportionally as the concentrations of \( {{\text{NO}}_{3}}^{ - } \) (0.036–0.120 min−1) and \( {{\text{SO}}_{4}}^{2 - } \) (0.0540–0.160 min−1) increased from 1 to 10 ppm at pH 7. The significant finding of this study is to provide the understanding of the oxidative degradation of PCE by Fe3O4 with glutathione in hyporheic zone and groundwater containing the \( {{\text{SO}}_{4}}^{2 - } \) and \( {{\text{NO}}_{3}}^{ - } \) anions for the development of novel remediation technolojgies.


Glutathione Hydroxyl radicals Nitrate radicals Sulfate radicals Tetrachloroethylene 



This study was funded by the Ministry Higher Education, Malaysia (Grant No: FRGS/1/2017/STG01/UITM/02/4). The greatest acknowledgement goes to the Faculty of Civil Engineering, UiTM, Malaysia for the analytical support, laboratory assistance and research team members (myBioREC Members).


  1. 1.
    Anipsitakis GP, Dionysiou DD (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol 37(20):4790–4797CrossRefGoogle Scholar
  2. 2.
    Aquino JM, Rodrigo MA, Rocha-Filho RC, Sáez C, Cañizares P (2012) Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes. Chem Eng J 184:221–227CrossRefGoogle Scholar
  3. 3.
    Barron EG (1951) Thiol groups of biological importance. Adv Enzymol Relat Areas Mol Biol 11:201–266Google Scholar
  4. 4.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513–886CrossRefGoogle Scholar
  5. 5.
    Che H, Bae S, Lee W (2011) Degradation of trichloroethylene by Fenton reaction in pyrite suspension. J Hazard Mater 185(2–3):1355–1361CrossRefGoogle Scholar
  6. 6.
    Choi JH, Maruthamuthu S, Lee HG, Ha TH, Bae JH (2009) Nitrate removal by electro-bioremediation technology in Korean soil. J Hazard Mater 168(2–3):1208–1216CrossRefGoogle Scholar
  7. 7.
    Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen HJ (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45(3–4):165–241CrossRefGoogle Scholar
  8. 8.
    Daneshvar N, Aber S, Vatanpour V, Rasoulifard MH (2008) Electro-Fenton treatment of dye solution containing Orange II: influence of operational parameters. J Electroanal Chem 615(2):165–174CrossRefGoogle Scholar
  9. 9.
    Danish M, Gu X, Lu S, Ahmad A, Naqvi M, Farooq U, Xue Y (2017) Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite. Chem Eng J 308:396–407CrossRefGoogle Scholar
  10. 10.
    Devi LG, Munikrishnappa C, Nagaraj B, Rajashekhar KE (2013) Effect of chloride and sulfate ions on the advanced photo Fenton and modified photo Fenton degradation process of Alizarin Red S. J Mol Catal A: Chem 374:125–131CrossRefGoogle Scholar
  11. 11.
    Doherty RE (2000) A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1,1,1-trichloroethane in the United States: part 1—historical background; carbon tetrachloride and tetrachloroethylene. Environ Forensics 1(2):69–81MathSciNetCrossRefGoogle Scholar
  12. 12.
    EPA US (2009) Environmental protection agency, national primary drinking water regulations. Retrieved from
  13. 13.
    El-Ayaan U, Linert W (2002) A kinetic study of the reaction between glutathione and iron(III) in the pH range from 1 to 3. J Coord Chem 55(11):1309–1314CrossRefGoogle Scholar
  14. 14.
    Fu X, Brusseau ML, Zang X, Lu S, Zhang X, Farooq U, Sui Q (2017) Enhanced effect of HAH on citric acid-chelated Fe(II)-catalyzed percarbonate for trichloroethene degradation. Environ Sci Pollut Res 24(31):24318–24326CrossRefGoogle Scholar
  15. 15.
    Grebel JE, Pignatello JJ, Mitch WA (2010) Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environ Sci Technol 44(17):6822–6828CrossRefGoogle Scholar
  16. 16.
    Guha N, Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Straif K (2012) Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites. Lancet Oncol 13(12):1192–1193CrossRefGoogle Scholar
  17. 17.
    Guzman-Duque F, Pétrier C, Pulgarin C, Peñuela G, Torres-Palma RA (2011) Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultrason Sonochem 18(1):440–446CrossRefGoogle Scholar
  18. 18.
    Hamed MY, Silver J (1983) Studies on the reactions of ferric iron with glutathione and some related thiols. Part II. Complex formation in the pH range three to seven. Inorg Chim Acta 80:115–122CrossRefGoogle Scholar
  19. 19.
    Hopkins FG (1927) On the isolations of glutathione. J Biol Chem 72:185Google Scholar
  20. 20.
    Hu J, Zeng C, Liu G, Luo H, Qu L, Zhang R (2018) Magnetite nanoparticles accelerate the autotrophic sulfate reduction in biocathode microbial electrolysis cells. Biochem Eng J 133:96–105CrossRefGoogle Scholar
  21. 21.
    Huang KC, Hoag GE, Chheda P, Woody BA, Dobbs GM (2002) Kinetics and mechanism of oxidation of tetrachloroethylene with permanganate. Chemosphere 46(6):815–825CrossRefGoogle Scholar
  22. 22.
    Jho EH, Singhal N, Turner S (2010) Fenton degradation of tetrachloroethene and hexachloroethane in Fe(II) catalyzed systems. J Hazard Mater 184(1–3):234–240CrossRefGoogle Scholar
  23. 23.
    Kachur AV, Tuttle SW, Biaglow JE (1998) Autoxidation of ferrous ion complexes: a method for the generation of hydroxyl radicals. Radiat Res 150(4):475–482CrossRefGoogle Scholar
  24. 24.
    Lee W, Batchelor B (2002) Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ Sci Technol 36(23):5147–5154CrossRefGoogle Scholar
  25. 25.
    Ma J, Wang F, Mostafavi M (2018) Ultrafast chemistry of water radical cation, H2O•+. Aqueous Solut Mol 23(2):244Google Scholar
  26. 26.
    Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B 87(3–4):105–145CrossRefGoogle Scholar
  27. 27.
    Miao Z, Brusseau ML, Carroll KC, Carreón-Diazconti C, Johnson B (2012) Sulfate reduction in groundwater: characterization and applications for remediation. Environ Geochem Health 34(4):539–550CrossRefGoogle Scholar
  28. 28.
    Mizutani Y, Hashimoto S, Tatsuno Y, Kitagawa T (1990) Resonance Raman pursuit of the change from iron (II)-oxygen (FeII-O2) to iron (III)-hydrohxyl (FeIII-OH) via iron (IV): oxygen (FeIV: O) in the autoxidation of ferrous iron-porphyrin. J Am Chem Soc 112(19):6809–6814CrossRefGoogle Scholar
  29. 29.
    Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crital Rev Environ Sci Technol 36(1):1–84CrossRefGoogle Scholar
  30. 30.
    Ruan X, Gu X, Lu S, Qiu Z, Sui Q (2015) Trichloroethylene degradation by persulphate with magnetite as a heterogeneous activator in aqueous solution. Environ Technol 36(11):1389–1397CrossRefGoogle Scholar
  31. 31.
    Serna-Galvis EA, Ferraro F, Silva-Agredo J, Torres-Palma RA (2017) Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes. Water Res 122:128–138CrossRefGoogle Scholar
  32. 32.
    Silva VAJ, Andrade PL, Silva MPC, Valladares LDLS, Aguiar JA (2013) Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J Magn Magn Mater 343:138–143CrossRefGoogle Scholar
  33. 33.
    Tang YJ, Carpenter S, Deming J, Krieger-Brockett B (2005) Controlled release of nitrate and sulfate to enhance anaerobic bioremediation of phenanthrene in marine sediments. Environ Sci Technol 39(9):3368–3373CrossRefGoogle Scholar
  34. 34.
    Thiam A, Zhou M, Brillas E, Sirés I (2014) Two-step mineralization of Tartrazine solutions: study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Appl Catal B 150:116–125CrossRefGoogle Scholar
  35. 35.
    Villegas-Guzman P, Hofer F, Silva-Agredo J, Torres-Palma RA (2017) Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton. Environ Sci Pollut Res 24(36):28175–28189CrossRefGoogle Scholar
  36. 36.
    Wang YM, Cao X, Liu GH, Hong RY, Chen YM, Chen XF, Wei DG (2011) Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia. J Magn Magn Mater 323(23):2953–2959CrossRefGoogle Scholar
  37. 37.
    Wu H, Yin JJ, Wamer WG, Zeng M, Lo YM (2014) Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 22(1):86–94CrossRefGoogle Scholar
  38. 38.
    Yeh CKJ, Wu HM, Chen TC (2003) Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems. J Hazard Mater 96(1):29–51CrossRefGoogle Scholar
  39. 39.
    Zang X, Gu X, Lu S, Qiu Z, Sui Q, Lin K, Du X (2014) Trichloroethylene oxidation performance in sodium percarbonate (SPC)/Fe2+ system. Environ Technol 35(7):791–798CrossRefGoogle Scholar
  40. 40.
    Zhang L, Nie Y, Hu C, Qu J (2012) Enhanced Fenton degradation of Rhodamine B over nanoscaled Cu-doped LaTiO3 perovskite. Appl Catal B 125:418–424CrossRefGoogle Scholar
  41. 41.
    Zhang R, Wang X, Zhou L, Liu Z, Crump D (2018) The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: a theoretical study. Water Res 135:144–154CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Civil EngineeringUniversiti Teknologi MARAShah AlamMalaysia

Personalised recommendations