Tractor and Implement

  • Karl Theodor ReniusEmail author


The standard tractor becomes productive in agriculture only in combination with implements or trailers. A very few special tractors offer platforms for transport.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References – Translation of titles in ( )

  1. [7.1]
    Stoss, K.J.: Tractor Power for Implement Operation − Mechanical, Hydraulic, and Electrical: An Overview. ASAE Lecture Series No. 37. St. Joseph, MI: ASAE 2013.Google Scholar
  2. [7.2]
    Fröba, N., M. Neukam, and A. Schauer: Anhängevorrichtungen an Traktoren. (Tractor coupling devices for pulling). DLG Merkblatt 387. Frankfurt/M.: Deutsche Landwirtschaftsgesellschaft 2013.Google Scholar
  3. [7.3]
    Mayhew, R.D.: Agricultural Tractor/Implement Drivelines. ASAE Lecture Series No. 19. St. Joseph, MI: ASAE 1994.Google Scholar
  4. [7.4]
    Seherr-Thoss, H.-Ch. v., F. Schmelz, and E. Aucktor: Universal Joints and Driveshafts. 2nd edition. Berlin, Heidelberg, New York: Springer-Verlag 2006. Also German and Chinese editions.Google Scholar
  5. [7.5]
    Niskanen, H.: The Proud History of AGCO. Duluth, USA, AGCO Corporation. Helsinki: Gummerus Printing, 2008.Google Scholar
  6. [7.6]
    Ferguson, H.: Improvements in and relating to Agricultural Implements. British patent No. 226,033, filed Dec. 11, 1923, accepted Dec. 18, 1924.Google Scholar
  7. [7.7]
    Ferguson, H.: Apparatus for Coupling Agricultural Implements to Tractors and Automatically Regulating the Depth of Work. British patent No. 253,366, filed Feb. 12, 1925, accepted June 14, 1926. Official reprint 1936 which embodies some corrections.Google Scholar
  8. [7.8]
    Seifert, A.: Hydraulische Kraftheber für den Ackerschlepper. (Hydraulic tractor hitches). Grundl. Landtechnik 1 (1951) No. 1, 45–60.Google Scholar
  9. [7.9]
    ISO 789-2: 2018. Agricultural tractors − Test procedures – Part 2: Rear three-point linkage lifting capacity.Google Scholar
  10. [7.10]
    ISO 730: 2009. Agricultural wheeled tractors – Rear-mounted three-point linkage – Categories 1N, 1, 2N, 2, 3N, 3, 4N. See also amendment 1, 2013.Google Scholar
  11. [7.11]
    Hain, K.: Das Übersetzungsverhältnis in periodischen Getrieben von Landmaschinen. (Input-output ratios of periodical linkages of agricultural machinery). Landt. Forschung 3 (1953) No. 4, 97–108.Google Scholar
  12. [7.12]
    Hawe, H., and S.S. Kofoed: Die Hubkraftkennlinien eines Dreipunktsystems. (Lifting forces of a three-point hitch). Grundl. Landtechnik 22 (1972) No.1, 16–20.Google Scholar
  13. [7.13]
    Morling, R.W.: Agricultural tractor hitches − analysis of design requirements. ASAE Lecture Series No. 5. St. Joseph, MI: ASAE 1979.Google Scholar
  14. [7.14]
    Pfab, H.: Grundlagen zur Auslegung des geregelten Krafthebers bei Traktoren. (Design fundamentals of the tractor threepoint hitch and its control). Ph.D. thesis TU Munich 1994. Fortschritt-Ber. VDI-Z. Series 14, No. 70. Düsseldorf: VDI-Verlag 1995.Google Scholar
  15. [7.15]
    Molari, G., M. Mattetti and A. Guarnieri: Optimal Three-Point Hitch Design to Maximize Lifting Performance. Transactions ASABE 57 (2014) No. 2, 371–379.Google Scholar
  16. [7.16]
    ISO 10448:1994. Agricultural tractors − Hydraulic pressure for implements.Google Scholar
  17. [7.17]
    Dwyer, M.J., D.A. Crolla, and G. Pearson: An Investigation of the Potential for Improvement of Tractor Draught Controls. J. agric. Engng. Res. 19 (1974) No. 2, 147–165.CrossRefGoogle Scholar
  18. [7.18]
    Kawamura, N.: Dynamic Analysis of Hydraulically Controlled Three Point Linkage Hitch. J. Jap. Soc. Agric. Machinery 18 (1956) No. 3, 1–15.Google Scholar
  19. [7.19]
    John Deere Lanz: Patent DE 11 29 751 B on three-point hitch control with automatic mix of draft and position signal. Filed June 11, 1959, published May 17, 1962 (see also patent DE 11 39 678 B).Google Scholar
  20. [7.20]
    Hesse, H.: Signalverarbeitung in Pflugregelsystemen. (Signal processing in plow control systems). Grundl. Landtechnik 32 (1982) No. 2, 54–59.Google Scholar
  21. [7.21]
    Henninghaus, F.: Regelung eines Krafthebers in einem Ackerschlepper mit servohydraulischen Elementen. (Tractor hitch control with servo-hydraulic elements). o+p 27 (1983) No. 2, 103–107.Google Scholar
  22. [7.22]
    Koenig, W.: Die Gestaltung einer neuen Reihe regelnder Kraftheber und ihrer Steuergeräte. (Design of a new family of threepoint hitches and their controls). Grundl. Landtechnik 18 (1968) No. 5, 165–171.Google Scholar
  23. [7.23]
    Harms, H.H.: Stand und Entwicklung der Schlepperhydraulik. (Review and prospects of tractor hydraulics). Grundl. Landtechnik 28 (1978) No. 3, 95–99.Google Scholar
  24. [7.24]
    Cowell, P.A. and P.F. Herbert: The Design of a Variable Geometry to Improve Depth Control of Tractor Mounted Implements. J. agric. Engng. Res. 39 (1988) No. 2, 85–97.CrossRefGoogle Scholar
  25. [7.25]
    Böhler, H.: Traktormodell zur Simulation der dynamischen Belastungen bei Transportfahrten. (Tractor model simulating dynamic loads for transport operations). Ph.D. thesis TU Munich 2001. Fortschritt-Ber. VDI-Z. Series 14, No. 104. Düsseldorf: VDI-Verlag 2001.Google Scholar
  26. [7.26]
    Hesse, H.: Aufbau und Wirkungsweise elektro-hydraulischer Regelsysteme. (Design and characteristics of electro-hydraulic closed loop controls). Grundl. Landtechnik 18 (1968) No. 1, 27–34.Google Scholar
  27. [7.27]
    Hesse, H., and R. Möller: Experimentelle und simulierte Untersuchung eines elektrohydraulischen Pflugregelungssystems. (Electro-hydraulic plow control: Experiments and simulation). Grundl. Landtechnik 18 (1968) No. 5, 177–184.Google Scholar
  28. [7.28]
    Boll, R., and K.J. Overshott (Vol.-Editors): Sensors, Volume 5: Magnetic sensors. Weinheim, New York: Wiley VCH 1989.Google Scholar
  29. [7.29]
    Hesse, H.: Hydraulik für Traktoren – Wissen ausführlich. (Tractor hydraulics – in detail). Edited by Bosch Rexroth AG, 1st Edition. Elchingen, Germany: 2014. ISBN 987-3-9814879-8-5.Google Scholar
  30. [7.30]
    Ayers, P.D., K.V. Verma, and M.N. Karim: Design and Analysis of Electrohydraulic Draft Control System. Transactions ASAE 32 (1989) No. 6, 1853–1855.CrossRefGoogle Scholar
  31. [7.31]
    Garbers, H.: Belastungsgrößen und Wirkungsggrade in Schlepperhydrauliksystemen. (Loads and efficiencies of tractor hydraulics). Ph.D. thesis TU Braunschweig 1985. Fortschritt-Ber. VDI-Z. Series 14, No. 30. Düsseldorf: VDI-Verlag 1986. German Summary in o+p 30 (1986) No. 11, 815–820.Google Scholar
  32. [7.32]
    ISO 11001-2:1993 (confirmed 2017). Agricultural wheeled tractors and implements – Three-point hitch couplers – Part 2: A-frame coupler.Google Scholar
  33. [7.33]
    ISO 1219-1:2012 (Amd. 2016). Fluid power systems and components – Part 1: Graphic symbols.Google Scholar
  34. [7.34]
    Fletcher, E. H.: Closed Center Hydraulic System with a Variable-Displacement Pump. ASAE paper 61–644. St. Joseph, MI: ASAE 1961. See also Agric. Engng. 6 (1963) No. 1, 18–21.Google Scholar
  35. [7.35]
    Khatti, R., and J. Plate: Allis-Chalmers Load-Sensitive Hydraulic System for Tractor-Implement Control. Transactions ASAE 17 (1974) No. 5, 851–855. See also SAE paper 730860 (1973) and ASAE paper 73-1504 (1973).Google Scholar
  36. [7.36]
    Garbers, H., and H.-H. Harms: Überlegungen zu künftigen Hydrauliksystemen in Ackerschleppern. (Thoughts on future tractor hydraulics). Grundl. Landtechnik 30 (1980) No. 6, 199–205.Google Scholar
  37. [7.37]
    Huova, M., et al.: Digital hydraulic multipressure actuator – the concept, simulation study and first experimental results. International Journal of Fluid Power 18 (2017) No. 3, 141–152 (with 22 refs).CrossRefGoogle Scholar
  38. [7.38]
    Matthies, H.J., and K.Th. Renius: Einführung in die Ölhydraulik. (Introduction to Oil Hydraulics), 8th Edition. Wiesbaden: Springer-Vieweg 2014.Google Scholar
  39. [7.39]
    Rotthäuser; S., and P. Achten: Ein neuer alter Bekannter – der Hydrotransformator. (Old principle renewed – the hydro transformer). o+p 42 (1998) No. 6, 374–377.Google Scholar
  40. [7.40]
    Garbers, H., and Wilkens: Die Anwendung der Hydrostatik in Landmaschinen und Ackerschleppern. (Applications of hydrostatics in agicultural machines and tractors). o+p 28 (1984) No. 9, 541–547.Google Scholar
  41. [7.41]
    Harms, H.-H., and T. Lang: Fluidtechnik (Fluid power). Lecture held at Institute of Agricultural Machinery and Fluid Power of TU Braunschweig, WS 2002/03.Google Scholar
  42. [7.42]
    Ketterling, E., J. Lemke, and J. Horsch: New Series of Large Row Crop Tractors From Case IH. SAE paper No. 871641. Warrendale, Pa, USA: SAE 1987.Google Scholar
  43. [7.43]
    van Hamme, T.: Schlepperhydraulik. (Tractor hydraulics). In: Matthies, H.J. and F. Meier (Editors): Jahrbuch Agrartechnik Vol. 2 (1989), 34–37 and 153–154. Frankfurt/M.: Maschinenbauverlag 1989.Google Scholar
  44. [7.44]
    Harms, H.-H.: Energieeinsparung durch Systemwahl in der Mobilhydraulik. (Saving energy in mobile hydraulics through adequate system choice). VDI-Z. 122 (1980) No. 11, 1006–1010.Google Scholar
  45. [7.45]
    Friedrichsen, W., and T. van Hamme: Load-sensing in der Mobilhydraulik. (Load-sensing in mobile hydraulics). o+p 30 (1986) No. 12, 916–919.Google Scholar
  46. [7.46]
    Fedde, T.: Elektrohydraulische Bedarfsstromsysteme am Beispiel eines Traktors. (Electro-hydraulic flow on demand for a tractor). Ph.D. thesis TU Braunschweig 2007. Forsch.-Bericht Inst. f. Landmasch. und Fluidtechnik TU Braunschweig. Aachen: Shaker-Verlag 2008.Google Scholar
  47. [7.47]
    Jessen, S.: Tractor hydraulics (bilingual German-English). In: Matthies, H.J. and F. Meier (Editors): Jahrbuch Agrartechnik Vol. 15 (2003), 61–68 and 274–275. Münster: Landwirtschaftsverlag 2003. ISBN 3-7843-3193-9.Google Scholar
  48. [7.48]
    Frerichs, L.: Efficient and high performing hydraulic systems in mobile machines. Review. 10th Intern. Fluid Power Conference Dresden March 8–10, 2016, Vol. III, 33–44 (39 Refs.).Google Scholar
  49. [7.49]
    Murrenhoff, H., and L. Eckstein: Fluidtechnik für mobile Anwendungen. (Fluid power for mobile systems). 6th Edition. Aachen: Shaker-Verlag 2014.Google Scholar
  50. [7.50]
    Murrenhoff, H.: Grundlagen der Fluidtechnik. (Fundamentals of fluid power and control), Part I: Hydraulics. 8th Edition. Aachen: Shaker-Verlag 2016.Google Scholar
  51. [7.51]
    ISO 17567: 2005. Agricultural and forestry tractors and implements – Hydraulic power beyond.Google Scholar
  52. [7.52]
    Hoffmann, D.: Betriebsverhalten und Einsatzmöglichkeiten verschiedener Zahnradpumpenbauarten. (In-service behaviour and application potential of diverse gear pump types). Grundl. Landtechnik 24 (1974) No. 2, 51–55.Google Scholar
  53. [7.53]
    ISO 10763:1994. Hydraulic fluid power – Plain-end seamless and welded precision steel tubes – Dimensions and nominal working pressures.Google Scholar
  54. [7.54]
    Wetteborn, H.: Hydraulische Leitungstechnik. (Hydraulic piping). Bremen: HANSAFLEX Hydraulik GmbH, 2008.Google Scholar
  55. [7.55]
    ISO 6802:2018. Rubber or plastics hoses and hose assemblies – Hydraulic impulse test with flexing.Google Scholar
  56. [7.56]
    Herzan, G.: Quick action couplings: The tractor to implement hydraulic interface. ASAE Lecture Series No. 8. St. Joseph, MI: ASAE 1982.Google Scholar
  57. [7.57]
    ISO 5675:2008. Agricultural tractors and machinery – General purpose quick-action hydraulic couplers.Google Scholar
  58. [7.58]
    ISO 16028:2015. Hydraulic fluid power – Flush-face type, quick-action couplings for use at pressures of 20 MPa (200 bar) to 31.5 MPa (315 bar) – Specifications.Google Scholar
  59. [7.59]
    ISO 19879: 2010. Metallic tube connections for fluid power and general use – Test methods for hydraulic fluid power connections.Google Scholar
  60. [7.60]
    ISO/DIS 8434-1:2016. Metallic tube connections for fluid power and general use – Part 1: 24° cone connectors.Google Scholar
  61. [7.61]
    Stecki, J.S. (Editor): Total Contamination Control. Fluid Power Net Publications, Melbourne, Australia: 2000.Google Scholar
  62. [7.62]
    Fitch, E.C., and G.E. Maroney: A fundamental method for establishing contaminant tolerance profiles for pumps. Second Fluid Power Symposium Jan. 4–7, 1971, Guilford, Paper C1.Google Scholar
  63. [7.63]
    Böinghoff, O.: Ursachen und Folgen der Verschmutzung von Hydraulikflüssigkeiten. (Causes and consequences of oil contamination in hydraulics). Grundl. Landtechnik 24 (1974) No. 2, 46–50.Google Scholar
  64. [7.64]
    ISO 11943:2018. Hydraulic fluid power – Online automatic particle-counting systems for liquids – Methods of calibration and validation.Google Scholar
  65. [7.65]
    ISO 16889:2008. Hydraulic fluid power – Filters – Multi-pass method for evaluating filtration performance of a filter element.Google Scholar
  66. [7.66]
    ISO 4406:2017. Hydraulic fluid power – Fluids – Method for coding the level of contamination by solid particles.Google Scholar
  67. [7.67]
    See M. Rempfer [2.39] in chapter 2.Google Scholar
  68. [7.68]
    Pichlmaier, B.: Traktionsmanagement für Traktoren. (Traction management for tractors). Ph.D. thesis TU Munich 2012. Fortschritt-Ber. VDI-Z. Series 14, No. 30. Düsseldorf: VDI-Verlag 2013.Google Scholar
  69. [7.69]
    König, W.: Statische Beanspruchung des Ackerschleppers durch Frontlader. (Static loads on the farm tractor chassis through front loaders). Grundl. Landtechnik 12 (1962) No. 14, 51–57Google Scholar

Other suggested publications

  1. Reviews on hydraulics of the annual German Yearbook Agricultural Engineering.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BaldhamGermany

Personalised recommendations