Advertisement

Tractor Workplace

  • Karl Theodor ReniusEmail author
Chapter

Abstract

The scientific investigation of human machine relations is still a young discipline.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References – Translation of titles in ( )

  1. [6.1]
    Dreyfuss, H.: The Measure of Man: Human Factors in Design. 2nd Edition. New York: Whitney Library of Design 1967.Google Scholar
  2. [6.2]
    Matthews, J., and J. D. C. Talamo: A study of tractor noise control. Conference on agricultural and allied tractors. London, Oct. 6–7, 1970. Paper No. 16.Google Scholar
  3. [6.3]
    Rohmert, W.: Physische Beanspruchung. (Physical stress). In: Schmidtke, H. (Editor): Lehrbuch der Ergonomie, 3. Ed. Munich: Verlag C. Hanser 1993.Google Scholar
  4. [6.4]
    Göhlich, H.:. Mensch und Maschine. (Operator-machinery relations). Lehrbuch der Agrartechnik, Vol 5. Hamburg/Berlin: Verlag P. Parey 1987.Google Scholar
  5. [6.5]
    Purcell, W. F. H.: The human factor in farm and industrial equipment design. ASAE Lecture Series No. 6. St. Joseph, MI: ASAE 1980 (with 27 further refs).Google Scholar
  6. [6.6]
    Larsen, L.F.: Nebraska Test No. 1110: John Deere 4430 Quad-Range Diesel. University of Nebraska - Lincoln 1972.Google Scholar
  7. [6.7]
    Yadar, R., and V. K. Tewarì. 1997. Cab for Indian Tractors: A case study. AMA 28 (1997) No. 2, 27–29.Google Scholar
  8. [6.8]
    Renius, K.Th.: Tractors: Two Axle Tractors. In: CIGR Handbook of Agricultural Engineering, Vol III, 115–184. St. Joseph, MI, USA: ASAE, American Society of Agricultural Engineers 1999.Google Scholar
  9. [6.9]
    Batel, W.: Technische Möglichkeiten zur Erleichterung der Arbeit der Fahrer von Schleppern, Mähdreschern und anderen selbstfahrenden Arbeitsmaschinen. (Technical aids easing the driver of tractors, combines and other mobile working machines). Grundl. Landtechnik 24 (1974) No. 1, 21–30 (with 57 further references).Google Scholar
  10. [6.10]
    Rohmert, W.: Maximalkräfte von Männern im Bewegungsraum der Arme und Beine. (Maximum man forces of hands and legs for different positions). Forsch.-Ber. NRW No. 1616. Köln and Opladen: Westdeutscher Verlag 1966.CrossRefGoogle Scholar
  11. [6.11]
    Dupuis, H., R. Preuschen, and B.Schulte: Zweckmäßige Gestaltung des Schlepperführerstandes. (Guideline for operator’s compartment). Series “Handarbeit und Technik” No. 20. Bad Kreuznach 1955.Google Scholar
  12. [6.12]
    Schulze-Zumkley, H.: Reifenparameterermittlung aus Fahrversuchen mit einem Ackerschlepper unter besonderer Berücksichtigung des Hohenheimer Reifenmodells. (Tractor tire parameters from driving experiments facing the Hohenheim tire model). Ph.D. thesis Univ. Stuttgart 2016. Forsch.-Bericht Agrart. VDI-MEG 571 (2017).Google Scholar
  13. [6.13]
    Plesser, J.: Dynamisches Verhalten von Ackerschlepperreifen in Vertikal- und Längsrichtung auf fester Fahrbahn. (Vertical and longitudinal dynamics of tractor tires on firm surface). Ph.D. thesis Univ. Stuttgart 1997. Fortschritt-Ber. VDI, Series 14, No. 83. Düsseldorf: VDI-Verlag 1997.Google Scholar
  14. [6.14]
    Lines, J.A., and K. Murphy: The stiffness of agricultural tractor tires. J. of Terramechanics 28 (1991) No. 1, 49–64.CrossRefGoogle Scholar
  15. [6.15]
    Ferhadbegović, B.: Entwicklung und Applikation eines instationären Reifenmodells zur Fahrdynamiksimulation von Ackerschleppern. (Development and application of an instationary tire model for simulation of tractor dynamics). Ph.D. thesis University of Stuttgart 2008. Aachen: Shaker Verlag, Forschungsber. Agrartechnik VDI-MEG , Nr. 475, 2009.Google Scholar
  16. [6.16]
    Witzel, A.: Ein validiertes Reifenmodell zur Simulation des fahrdynamischen und fahrkomfortrelevanten Verhaltens von Ackerschleppern bei Hindernisüberfahrt. (A validated tire model for simulation of tractor dynamics and comfort crossing an obstacle) Ph.D. thesis University of Stuttgart 2015. Aachen: Shaker Verlag 2015.Google Scholar
  17. [6.17]
    Witzel: P.: The Hohenheim Tyre Model: A validated approach for the simulation of high volume tyres – Part I: Model structure and parameterisation. Part II: Validation. J. of Terramechanics 75 (2018), 3–14, 15–24.CrossRefGoogle Scholar
  18. [6.18]
    Ulrich, A., and H. Göhlich: Fahrdynamik von Schleppern mit und ohne Arbeitsgeräte bei höheren Fahrgeschwindigkeiten. (Tractor drive dynamics with and without implements at higher speeds). Grundl. Landtechnik 33 (1983) No. 4, 108–115.Google Scholar
  19. [6.19]
    Ulrich, A.: Untersuchungen zur Fahrdynamik von Traktoren mit und ohne Anbaugerät. (Investigation of tractor drive dynamics with and without implement). Ph.D. thesis TU Berlin 1983. Forschungsber. Agrart. VDI-MEG No. 82, TU Berlin: 1983.Google Scholar
  20. [6.20]
    Böhler, H.: Traktormodell zur Simulation der dynamischen Belastungen bei Transportfahrten. (Tractor model for simulation of dynamic loads during transports). Ph.D. thesis TU München 2001. Fortschritt-Ber. VDI, Series 14, No. 104. Düsseldorf: VDI-Verlag 2001.Google Scholar
  21. [6.21]
    Bös, M.: Untersuchung und Optimierung der Fahrkomfort- und Fahrdynamikeigenschaften von Radladern unter Berücksichtigung der prozessspezifischen Randbedingungen. (Investigation and optimization of riding comfort and drive dynamics of wheel loaders under practical conditions). Ph.D. thesis KIT 2014. Karlsruher Schriftenreihe Fahrzeugsystemtechnik No. 29 (2014).Google Scholar
  22. [6.22]
    Göhlich, H., and H. Hesse: Landwirtschaftlich nutzbare Zugmaschine mit angekoppeltem Arbeitsgerät. (Agricultural tractor hitch control for implements). German patent DE 3 446 811 C2. (filed 21.12.1984, granted 27.5.1992).Google Scholar
  23. [6.23]
    -.-: Active pitch oscillation damping for farm tractors. Bosch Product Information HP/VEK2-BEY 017/9 De/En/Fr., 1991.Google Scholar
  24. [6.24]
    Hesse, H.: Digitale elektrische Hubwerksregelung für Ackerschlepper. (Digital hitch control for tractors). Ölhydr. Pneum. (o+p) 35 (1991) No. 11, 828, 830, 832–835.Google Scholar
  25. [6.25]
    Hesse, H.: 25 Jahre elektronische Hubwerksregelung EHR für Traktoren. (25 years of electronic tractor hitch control EHR). Ölhydr. Pneum. (o+p) 49 (2005) No. 6, 394–401 (see also SICFP’95, Tampere 1152–1172).Google Scholar
  26. [6.26]
    Langer, T. H.; K. Holm-Petersen, and D. Metker: Comfort Evaluation Criteria for Pitching Vibration Damping of Agricultural Tractors. In: VDI-Berichte 2273 (2016). 437–444. Düsseldorf: VDI-Verlag 2016.Google Scholar
  27. [6.27]
    Marx, B.: Nickschwingungsdämpfung und Radlastmanagement für Traktorgespanne mit Starrdeichselverbindung. (Tractor pitch damping and tire load management pulling rigidly coupled trailers). Ph.D. thesis Univ. Hohenheim 2016. Forsch.-Bericht Agrart. VDI-MEG 559 (2016).Google Scholar
  28. [6.28]
    Stikeleather, L.F.: Operator seats for agricultural equipment. ASAE Lecture Series No. 7. St. Joseph, MI: ASAE 1981.Google Scholar
  29. [6.29]
    Hauck, M.: Geregelte Dämpfung für Traktor-Fahrersitze. (Controlled damping for tractor seats). Ph.D. thesis TU Berlin 2001.Google Scholar
  30. [6.30]
    Rahmfeld, R., and M. Ivantysynowa: An overview about active oscillation damping of mobile machine structure. Review. Internat. J. of Fluid Power 5 (2004) No. 2, 5–25.CrossRefGoogle Scholar
  31. [6.31]
    Stikeleather, L.F.: The development of an active seat suspension system for off-road vehicles. Ph.D. thesis at North Carolina State University 1968.Google Scholar
  32. [6.32]
    Stikeleather, L.F.: The development of an active seat suspension system for off-road vehicles. Transactions ASAE 13 (1970) No. 1, 99–106 (See also No. 5, 608–611).Google Scholar
  33. [6.33]
    Dufner, D.L., and T.E. Schick: John Deere Active SeatTM. A New Level of Seat Performance. In: VDI-Bericht 1716, 43–49. Düsseldorf: VDI-Verlag 2002.Google Scholar
  34. [6.34]
    -,-: Information from John Deere 2018.Google Scholar
  35. [6.35]
    Crocker, M.J.: Handbook of Acoustics. New York: Wiley, Interscience Public. 1998.Google Scholar
  36. [6.36]
    Witte, E.: Stand und Entwicklung der Lärmbelastung von Schlepper und Mähdrescherfahrern. (Review on noise levels of tractor and combine drivers). Grundl. Landtechnik 29 (1979) No. 3, 92–99.Google Scholar
  37. [6.37]
    -.-: Akustische Felder und Wellen. (Acoustic areas and waves). DEGA-Empfehlung 101. Berlin: DEGA, Deutsche Gesellschaft für Akustik e.V. 2006. www.dega-akustik.de (Access 3.2018).
  38. [6.38]
    -.-: Electroacoustics – sound level meters IEC 61672-1. International Electronical Commission (see also DIN EN 61672-1).Google Scholar
  39. [6.39]
    Bacher, R.: Möglichkeiten zur Lärmreduzierung an Ackerschleppern. (Potential of noise reduction for tractors). Ph.D. thesis TU Munich 1981. See also Grundl. Landtechnik 30 (1980) No. 2, 51–58.Google Scholar
  40. [6.40]
    Kirste, T.: Entwicklung eines 30 kW-Forschungstraktors als Studie für lärmarme Gesamtkonzepte. (Development of a 30 kW low noise tractor). Diss. TU Munich 1989. Fortschritt-Ber. VDI, Series 14, No. 43. Düsseldorf, VDI-Verlag 1989.Google Scholar
  41. [6.41]
    Massak, F., and K.Th. Renius: Mounty 65 - der neue Bergtraktor von Reform-Werke. (Mounty 65, the new mountain tractor of Reform, Austria). In: VDI-Berichte 1636, S. 41–46. Düsseldorf: VDI-Verlag 2001.Google Scholar
  42. [6.42]
    Weichenrieder, A.: Untersuchung zur Belastung des Schlepperfahrers durch Lärm. (Investigation of tractor driver noise loads). Grundl. Landtechnik. 23 (1973) No. 5, 121–128.Google Scholar
  43. [6.43]
    Batel, W.: Messungen zur Staub-, Lärmund Geruchsbelastung an Arbeitsplätzen in der landwirtschaftlichen Produktion und Wege zur Entlastung – Erster Bericht. (Measurement of dust, noise and smell concentrations at agricultural work places – first report). Grundl. Landtechnik 25 (1975) No. 5, 135–157 (67 references).Google Scholar
  44. [6.44]
    Atiemo, M.A., K. Yoshida, and G.C. Zoerb: Dust Measurements in Tractor and Combine Cabs. Transactions ASAE 23 (1980) No. 3, 571–576.Google Scholar
  45. [6.45]
    Thorpe, A., et al.: Investigation of the Performance of Agricultural Vehicle Cab Filtration Systems. J. agric. Engng. Res. 66 (1997) No. 2, 135–149.CrossRefGoogle Scholar
  46. [6.46]
    Noren, O.: Dust Concentrations During Operations with Farm Machines. ASAE Paper 85-1055. St. Joseph, MI: ASAE 1985.Google Scholar
  47. [6.47]
    Janssen, J.: Klimatechnische Gesichtspunkte bei der Konstruktion von Fahrerkabinen. (Climate objectives for tractor cab design). Grundl. Landtechnik 26 (1976) No. 2, 35–43.Google Scholar
  48. [6.48]
    Batel, W., and R. Möller: Klimabelastung der Fahrer von Schleppern und Arbeitsmaschinen mit Eigenantrieb. (Climate loads on drivers of tractors and mobile machines). Grundl. Landtechnik 30 (1980) No. 5, 155–161.Google Scholar
  49. [6.49]
    Sacikumar, A., et al.: Development of Solar Powered Evaporatively Cooled Tractor Cab. AMA 49 (2018) No. 3, 44–49.Google Scholar
  50. [6.50]
    EN 15695-1: 2018. Agricultural tractors and self-propelled sprayers – Protection of the operator (driver) against hazardous substances – Part 1: Cab classification, requirements and test procedures.Google Scholar
  51. [6.51]
    EN 15695-2: 2017. Agricultural tractors and self-propelled sprayers – Protection of the operator (driver) against hazardous substances – Part 2: Filters, classification requirements and test procedures.Google Scholar
  52. [6.52]
    Arndt, J. F.: Roll-over protective structures for farm and construction tractors, a 50-year review. SAE paper 710 508, 1971.Google Scholar
  53. [6.53]
    Skromme, A.: History of rollover protection for farm tractors. ASAE Paper IA5-86-111. St. Joseph, MI: ASAE 1986.Google Scholar
  54. [6.54]
    Moberg, H. A.: Dynamic testing of tractor protection cabs: development of method, practical experiences. SAE paper 730 761, 1973.Google Scholar
  55. [6.55]
    Chisholm, C.J., and P.C. Seward: The Correlation between Damage to Rollover Protective Structures in Tractor Overturning Accidents and in Standard Tests. Report to EEC as confidential departmental Note CDN/E/674/4600. Silsoe: NIAE 1976. (Main conclusion: Energy input to the ROPS was in about 95% of all analyzed sideways turn over accidents ≤ test energies).Google Scholar
  56. [6.56]
    Söhne, W., and H. Schwanghart: Stand und Entwicklung von Prüfmethoden bei Schlepperumsturzschutzvorrichtungen. (Review of test specifications for tractor ROPS). Grundl. Landtechnik 28 (1978) No. 5, 178–184.Google Scholar
  57. [6.57]
    Schwanghart, H.: Umsturzverhalten von Traktoren und Auswirkungen auf die Schutzvorichtungen und die Sicherheit. (Overturning of tractors with impacts on safety frames and human safety). Forsch.-Bericht Agrartechnik MEG Nr. 73. 2nd Edition. TU München 1984.Google Scholar
  58. [6.58]
    Schwanghart, H.: Der statische Test als Prüfung der Festigkeit von Schlepperumsturzschutzvorrichtungen in der Europäischen Gemeinschaft. (The static method for ROPS tests within the European Community). Grundl. Landtechnik 28 (1978) No. 5, 184–189.Google Scholar
  59. [6.59]
    Chisholm, C.J.: A Mathematical Model of Tractor Overturning and Impact Behaviour. J. agic. Engng. Res 24 (1979) No. 4, 375–394.CrossRefGoogle Scholar
  60. [6.60]
    Chisholm, C.J.: Experimental Validation of Tractor Overturning Simulation. J. agic. Engng. Res 24 (1979) No. 4, 395–415.CrossRefGoogle Scholar
  61. [6.61]
    Chisholm, C.J.: The Effect of Parameter Variation on Tractor Overturning and Impact Behaviour. J. agic. Engng. Res 24 (1979) No. 4, 417–440.CrossRefGoogle Scholar
  62. [6.62]
    Boyer, F., C.J. Chisholm, and H. Schwanghart: Roll-over protective structures for wheeled agricultural or forestry tractors. Final Report to the Commission of the European Communities. Brussels, Oct. 1976.Google Scholar
  63. [6.63]
    -.-: OECD Standard code for the official testing of protective structures on agricultural and forestry tractors (static test). Code 4 (2011).Google Scholar
  64. [6.64]
    Ayers, P., and F. Khorsandy: Reducing tractor rollover fatalities. Resource 24 (2017) No. 6, 6–7.Google Scholar
  65. [6.65]
    Myers, J. R., and K. J. Hendricks: Agricultural tractor overturn deaths: Assessment of trends and risk factors. Americ. J. of Industrial Medicine 53 (2010), No. 7, 662–672.CrossRefGoogle Scholar
  66. [6.66]
    Ayers, P. D., and V. Rondelli: Tractor ROPS and stability research: Introduction to this special issue. J. of Agric. Safety and Health 22 (2016) No. 4, 213–214.Google Scholar
  67. [6.67]
    Ayers, P. D., et al: Development and Evaluation of a Computer-Based ROPS Design Program. J. of Agric. Safety and Health 22 (2016) No. 4, 247–260.Google Scholar
  68. [6.68]
    -.-: OECD Standard code for the official testing of front mounted roll-over protective structures on narrow-track wheeled agricultural and forestry tractors. Code 6 (2012).Google Scholar
  69. [6.69]
    -.-: OECD Standard code for the official testing of rear mounted roll-over protecttive structures on narrow-track wheeled agricultural and forestry tractors. Code 7 (2012).Google Scholar
  70. [6.70]
    -.-: OECD Standard code for the official testing of protective structures on agricultural and forestry track laying tractors. Code 8 (2012).Google Scholar
  71. [6.71]
    Renius, K.Th.: Proposal of a logarithmic tachometer scale (unpublished). Internal KHD Report LT-TBK Oct. 28, 1980.Google Scholar
  72. [6.72]
    Munack, A. (Editor): Information technology. CIGR Handbook of Agricultural Engineering, Vol. VI. St. Joseph, MI: ASABE 2006. Turkish version in 2015.Google Scholar
  73. [6.73]
    Auernhammer, H.: The German Standard for Electronical Tractor-Implement Data Communication. 2nd AGROTIQUE 89, Bordeaux 1989. Proceedings 395–402.Google Scholar
  74. [6.74]
    Auernhammer H., and J. Frisch. (Editors): Landwirtschaftliches BUS-System – LBS. (Agricultural BUS-System – LBS). KTBL Paper No. 196. Münster-Hiltrup: Landwirtschaftsverlag 1993.Google Scholar
  75. [6.75]
    Munack, A., and H. Speckmann: Communication Technology is the Backbone of Precision Agriculture. CIGR E-Journal 3 (2001) May Issue, 12 pages (open access).Google Scholar
  76. [6.76]
    Auernhammer, A.: Systematik der Schlepperelektronik. (Classification of electronics application for tractors). Landtechnik 43 (1988) No. 5, 213–214.Google Scholar
  77. [6.77]
    Stone, M.L., et al.: ISO 11783: An Electronic Communications Protocol for Agricultural Equipment. ASAE Lecture Series No. 23. St. Joseph Mi, USA: ASAE 1999.Google Scholar
  78. [6.78]
    Auernhammer, H., and J.K. Schueller: Precision Farming. In: CIGR Handbook of Agricultural Engineering Vol. III, Plant production engineering, 598–616. St. Joseph Mi, USA: ASAE 1999.Google Scholar
  79. [6.79]
    Kwon, et al.: Applications of Smartphone Cameras in Agriculture, Environment, and Food: A review. J. of Biosystems Eng. 42 (2017) No. 4, 330–338.Google Scholar
  80. [6.80]
    ISO 11783. Tractors and machinery for agriculture and forestry — Serial control and communications data network, 14 parts. Geneva, Switzerland: 2013.Google Scholar
  81. [6.81]
    Martinus, M.: Funktionale Sicherheit von mechatronischen Systemen bei mobilen Arbeitsmaschinen. (Functional safety of mechatronic systems of mobile machinery). Ph.D. thesis TU Munich 2004. Fortschritt-Ber. VDI, Series 12, No. 586. Düsseldorf: VDI-Verlag 2005.Google Scholar
  82. [6.82]
    Ehrl, M., and H. Auernhammer. “X-By-Wire via ISOBUS Communication Network”. CIGR Journal Vol. IX, 2007. Manuscript ATOE 07 002 (open access).Google Scholar
  83. [6.83]
    Freimann, R.: A Basic Approach to Implement Guided Tractor Control. CIGR Journal Vol. IX (2007). Manuscript ATOE 07 003 (open access).Google Scholar
  84. [6.84]
    Freimann, R.: Automation mobiler Arbeitsmaschinen – Gerät steuert Traktor. (Automation of mobile machinery – implement controls tractor). Ph.D. thesis TU Munich 2003. Fortschritt-Ber. VDI, Series 12, No. 586. Düsseldorf: VDI-Verlag 2005.Google Scholar
  85. [6.85]
    Bittner, G.: AGRO NAV® autonomous, offroad vehicle navigation and implement control system, using CDGPS and inertial backup. AgEng 2000, Paper 00-IE-007.Google Scholar
  86. [6.86]
    Thomasson, J.A., et al.: Autonomous Technologies in Agricultural Equipment: A Review of the State of the Art. ASABE Lecture Series No. 40. St. Joseph, MI: ASABE 2019 (with 72 further refs).Google Scholar
  87. [6.87]
    van der Vlugt, P.: The AEF – Ag Industry’s initiative in electronic standards implementation. Club of Bologna, Nov. 10–11, 2013. www.clubofbologna.org.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BaldhamGermany

Personalised recommendations