Advertisement

Functional Observer-Based Sliding Mode Control for Parametric Uncertain Discrete-Time Delayed Stochastic Systems

  • Satnesh SinghEmail author
  • S. Janardhanan
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 483)

Abstract

This chapter is concerned with the problem of the functional observer-based  sliding mode control (SMC) design for parametric uncertain discrete-time delayed stochastic systems including mismatched parameter uncertainty in the state matrix and in the delayed state matrix. Stability analysis of the sliding function is presented in a time delayed stochastic system with the linear matrix inequality (LMI) approach. Moreover, it is shown that the state trajectories can be driven onto the specified sliding surface despite the presence of state delay, unmatched parameter uncertainty, and stochastic noise in the system. The research is motivated by the fact that system states are not always accessible for the state feedback. Therefore, SMC is estimated using the functional observer technique. To mitigate the side effect of parametric uncertainty on the estimation error, a sufficient condition of stability is proposed based on Gershgorin’s circle theorem. The claims made are validated through numerical simulations.

Keywords

Discrete-time systems Stochastic system State delay Parametric uncertainty Sliding mode control State estimation Linear matrix inequalities Linear functional observer 

References

  1. 1.
    Hu, J., Wang, Z., Gao, H., Stergioulas, L.K.: IEEE Trans. Ind. Electron. 59(7), 3008 (2012).  https://doi.org/10.1109/TIE.2011.2168791CrossRefGoogle Scholar
  2. 2.
    Singh, S., Janardhanan, S.: Int. J. Syst. Sci. 49(9), 1895 (2018).  https://doi.org/10.1080/00207721.2018.1479463CrossRefGoogle Scholar
  3. 3.
    Boukal, Y., Zasadzinski, M., Darouach, M., Radhy, N.E.: In: American Control Conference, ACC’2016. United States, Boston (2016)Google Scholar
  4. 4.
    Islam, S.I., Lim, C.C., Shi, P.: J. Frankl. Inst. (2018)Google Scholar
  5. 5.
    Lin, Y., Shi, Y., Burton, R.: IEEE/ASME Trans. Mechatron. 18(1), 1 (2013).  https://doi.org/10.1109/TMECH.2011.2160959CrossRefGoogle Scholar
  6. 6.
    Nguyen, M.C., Trinh, H., Nam, P.T.: Int. J. Syst. Sci. 47(13), 3193 (2016)CrossRefGoogle Scholar
  7. 7.
    Ji, Y., Qiu, J.: Appl. Math. Comput. 238, 70 (2014)MathSciNetGoogle Scholar
  8. 8.
    Pai, M.C.: Proc. Inst. Mech. Engineers. Part I J. Syst. Control. Eng. 226(7), 927 (2012).  https://doi.org/10.1177/0959651812445248Google Scholar
  9. 9.
    Xia, Y., Fu, M., Shi, P., Wang, M.: IET Control Theory Appl. 4(4), 613 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Xia, Y., Jia, Y.: IEEE Trans. Autom. Control 48(6), 1086 (2003)CrossRefGoogle Scholar
  11. 11.
    Darouach, M.: In: 2006 14th Mediterranean Conference on Control and Automation, pp. 1–5 (2006).  https://doi.org/10.1109/MED.2006.328735
  12. 12.
    Singh, S., Janardhanan, S.: IET Control Theory Appl. 13(4), 562 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Singh, S., Janardhanan, S.: Int. J. Syst. Sci. 48(15), 3246 (2017)CrossRefGoogle Scholar
  14. 14.
    Bartoszewicz, A.: IEEE Trans. Ind. Electron. 45(4), 633 (1998)CrossRefGoogle Scholar
  15. 15.
    Darouach, M.: IEEE Trans. Autom. Control 50(2), 228 (2005)CrossRefGoogle Scholar
  16. 16.
    Gahinet, P.: LMI Control Toolbox: For Use with MATLAB; User’s Guide; Version 1. Computation, visualization, programming (MathWorks) (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations