Groundwater in Australia: Occurrence and Management Issues

  • Steve BarnettEmail author
  • Nikki Harrington
  • Peter Cook
  • Craig T. Simmons
Part of the Global Issues in Water Policy book series (GLOB, volume 24)


Groundwater is one of Australia’s most important natural resources and is the only source of water available for many regions, supplying urban areas, agriculture, industry and mining developments. The economic value to the economy is estimated to be $A34 billion. Groundwater also sustains ecosystems, through baseflow discharges to surface water and artesian spring discharges.

Groundwater is found in both sedimentary and fractured rock aquifers, with most groundwater extraction occurring from the higher yielding sedimentary aquifers including unconsolidated Quaternary alluvial sediments, consolidated sandstones and limestones in large sedimentary basins. Low salinity groundwater is generally found in higher rainfall areas around the southern coastal areas. In the arid interior, high evaporation results in salinities up to 100,000 mg/L. Deeper confined aquifers may contain older low salinity groundwaters recharged thousands of years ago.

Groundwater resources have been rapidly developed over the past 40 years. Current extraction is about 5000 GL/year with 70% used for irrigation whereas in France, 60% of the total extraction of 34,000 GL/year was used for public water supplies. Early management intervention has resulted in only 2% of Australia’s management areas being over-exploited.

Future challenges for groundwater management in Australia include potential impacts of climate change, impacts of mining and declining government funding.


Hydrogeology Groundwater resources Groundwater extraction Climate change Mining impacts Groundwater management 


  1. Australian Water Resources Council. (1975). Groundwater resources of Australia. Commonwealth of Australia, Department of Environment and Conservation.Google Scholar
  2. Barron, O. V., Crosbie, R. S., Charles, S. P., Dawes, W. R., Ali, R., Evans, W. R., et al. (2011). Climate change impact on groundwater resources in Australia (Waterlines Report Series No 67). Canberra, Australia: National Water Commission.Google Scholar
  3. Bates, B., Chandler, S. P., Charles, S. P., & Campbell, E. P. (2010). Assessment of apparent non-stationarity in time series of annual inflow, daily precipitation and atmospheric circulation indices: A case study from southwest Western Australia. Water Resources Research, 46, W00H02. Scholar
  4. Bureau of Meteorology. (2016). Australian Groundwater Insight website:
  5. Clifton, C., Cossens, B., & McAuley, C. (2007). A framework for assessing the environmental water requirements of groundwater dependent ecosystems. Report prepared for Land & Water Australia, Canberra. Accessed 26 Jan 2014.
  6. Comino, M., Tan, P.-L., & George, D. (2014). Between the cracks: Water governance in Queensland, Australia and potential cumulative impacts from mining coal seam gas. Journal of Water Law, 23(6), 219–228.Google Scholar
  7. CSIRO. (2008). Water availability in the Murray–Darling Basin: a report to the Australian Government from the CSIRO Murray– Darling Basin Sustainable Yields Project. Clayton South, Australia: CSIRO.Google Scholar
  8. Department of Natural Resources and Mines. (2016). Underground water impact report for theSurat Cumulative Management Area – 2016. Brisbane, Australia: Government of Queensland.Google Scholar
  9. Dillon, P., Pavelic, P., Page, D., Beringen, H., & Ward, J. (2009). Managed aquifer recharge: An introduction (Waterlines Report Series No. 13). Canberra, Australia: National Water Commission.Google Scholar
  10. Evans, R. (2007). The impact of groundwater use on Australia’s rivers (Land & Water Australia Technical Report). Braddon, Australia: Land & Water Australia, Canberra.Google Scholar
  11. Ivkovic, K. M., Marshall, S. M., Morgan, L. K., Werner, A. D., Carey, H., Cook, S., et al. (2012). National-scale vulnerability assessment of seawater intrusion: Summary report (Waterlines Report No. 85). Canberra, Australia: National Water Commission.Google Scholar
  12. Marsden Jacob Associates. (2012). Assessing the value of groundwater (Waterlines Report). Canberra, Australia: National Water Commission.Google Scholar
  13. National Land and Water Resources Audit. (2001). Australian water resources assessment 2000. Commonwealth of Australia, Canberra. Accessed 26 Jan 2014
  14. National Water Commission. (2012). Groundwater essentials. Canberra, Australia: Commonwealth of Australia.Google Scholar
  15. National Water Commission. (2014). Australia’s Water Blueprint: National reform assessment 2014. Canberra, Australia: Commonwealth of Australia.Google Scholar
  16. Natural Resource Management Ministerial Council, Environmental Protection and Heritage Council and National Health and Medical Research Council. (2009). Australian guidelines for water recycling: Managing health and environmental risks (Phase 2) – Managed aquifer recharge. Canberra, Australia: National Water Quality Management Strategy, NRMMC, EPHC and NHRMC.Google Scholar
  17. Prosser, I., Wolf, L., & Littleboy, A. (2011). Water in mining and industry. In I. Prosser (Ed.), Water: Science and solutions for Australia. Collingwood, Australia: CSIRO.Google Scholar
  18. Richardson, S., Irvine, E., Froend, R., Boon, P., Barber, S., & Bonneville, B. (2011a). Australian groundwater-dependent ecosystems toolbox Part 1: Assessment framework (Waterlines Report). Canberra, Australia: National Water Commission.Google Scholar
  19. Richardson, S., Irvine, E., Froend, R., Boon, P., Barber, S., & Bonneville, B. (2011b). Australian groundwater-dependent ecosystems toolbox Part 2: Assessment tools (Waterlines Report). National Water Commission, Canberra, Australia.Google Scholar
  20. Simmons, C. T. (2016). Groundwater down under. Ground Water, 54(4), 459–460.CrossRefGoogle Scholar
  21. Werner, A. D. (2010). A review of seawater intrusion and its management in Australia. Hydrogeology Journal, 18, 281–285.CrossRefGoogle Scholar
  22. Wilhite, D. A. (2012). Breaking the Hydro-Illogical Cycle: Changing the paradigm for drought management. EARTH Magazine, 57(7), 71–72.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Steve Barnett
    • 1
    Email author
  • Nikki Harrington
    • 2
  • Peter Cook
    • 3
  • Craig T. Simmons
    • 4
  1. 1.AdelaideAustralia
  2. 2.Innovative Groundwater Solutions Pty Ltd (IGS)Victor HarbourAustralia
  3. 3.Flinders UniversityAdelaideAustralia
  4. 4.National Centre for Groundwater Research and TrainingFlinders UniversityAdelaideAustralia

Personalised recommendations