Advertisement

Conceptual Approaches, Methods and Models Used to Assess Abstraction Limits for Unconfined Aquifers in France

  • Luc ArnaudEmail author
Chapter
  • 27 Downloads
Part of the Global Issues in Water Policy book series (GLOB, volume 24)

Abstract

This chapter presents a review of methods an tools used in France to assess groundwater abstraction limits in unconfined aquifers. The experience gained from over 30 studies shows that the estimation of Maximum Permissible Volume (MPV) is complicated by numerous uncertainties. The first prerequisite is a good knowledge of the dynamics of the hydrosystems and abstraction volumes, but unfortunately this is rarely achieved. Moreover, both the calculation methods and modelling tools that aim to conceptualize these complex systems have limitations due to the simplifying assumptions required for their application. Technical recommendations are proposed for a proper assessment of such uncertainties. In many cases, the calculated maximum permissible volumes were much lower than the previously authorized volumes. Therefore, many of the results were contested by affected users. Such disputes concerned not only the economic consequences of reduced abstraction, but also the scientific basis of the studies in view of the known uncertainties and limitations. The last section of this chapter discusses this phase of negotiations, specifically based on examples from the Adour-Garonne water basin in southwest France.

Keywords

Abstraction limits Calculation methods Hydrogeological models Uncertainties Unconfined aquifers 

References

  1. Agence de l’Eau RMC. (2011). – Bureau du comité de bassin Rhône Méditerranée. Séance du 10 juin 2011. Point IV: méthodes et études des volumes prélevables.Google Scholar
  2. Agence de l’Eau RMC, DIRENs of the RMC Basin, ONEMA. (2009). – Études de détermination des volumes maximum prélevables. “Standard” Terms of Reference.Google Scholar
  3. Agence de l’Eau RMC, IRSTEA, ONEMA. (2013). – Note du secrétariat technique du SDAGE. Mieux gérer les prélèvements d’eau. L’évaluation préalable des débits biologiques dans les cours d’eau.Google Scholar
  4. Anderson, M. P., Woessner, W., & Hunt, R. (2015). Applied groundwater modeling (2nd ed.). New York: Academic Press-Elsevier.Google Scholar
  5. Arnaud, L. (2016) – Estimation des volumes prélevables dans les aquifères à nappe libre: retour d’expériences sur les méthodes utilisées, identification des problems rencontrés, recommandations. Rapport final, BRGM/RP-64615-FR. 107 p., 42 fig., 1 app.Google Scholar
  6. Bear, J., & Cheng, A. H. D. (2010). Modeling groundwater flow and contaminant transport. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  7. BRGM. (2011). – Caractérisation du comportement d’un indicateur piézométrique et définition des volumes prélevables sur les compartiments carbonatés Nord et Sud de l’entité MOSSON de la masse d’eau FR_DO_124. Report BRGM/RP-59658-FR.Google Scholar
  8. BRGM. (2013). – Connaissances des ressources réellement disponibles sur l’ensemble des bassins versants crayeux de Champagne-Ardenne. Report BRGM/RP-61371-FR.Google Scholar
  9. Calligée Consultants. (2008). Expertise et objectifs du projet de SDAGE de la ressource en eau sur la bordure Nord du Marais Poitevin vendéen, Bassin du Lay, de la Vendée et des Autizes, et propositions de principes de gestion. Phase 3: étude d’un cadre de gestion des nappes du Sud-Vendée compatible avec les enjeux écologiques et économiques. Report N08-85138C.Google Scholar
  10. CGEDD, CGAAER. (2015). – Evaluation de la mise en œuvre des protocoles Etat-profession agricole conclus en 2011 dans le bassin Adour-Garonne pour la gestion quantitative de l’eau.Google Scholar
  11. Grontmij, Rivages Environnement. (2014). – Identification et préservation des ressources majeures en eau souterraine pour l’AEP. Lot n°4: Etude des alluvions du Gapeau, et des alluvions et formations du Muschelkalk de la plaine de l’Eygoutier. Rapport de phase 2. Etape 3 – Complément à l’étude des volumes maximums prélevables des alluvions du Gapeau.Google Scholar
  12. Healy, R. W. (2010). Estimating groundwater recharge. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  13. Hébert, N., Grandmougin, B., Loubier, S., Graveline, N., Marsac, S., Amen, J.F., & Brunel, L. (2012). – Réforme des autorisations de prélèvement dans le bassin Adour-Garonne: impacts sur l’économie agricole. Agronomie Environnement et Sociétés, Vol. 2, n°2.Google Scholar
  14. Ministry for Ecology, Energy, Sustainable Development and Territorial Development. (2008). – Circular (in French) of 30 June 2008 on the reduction of quantitative disequilibria during water sampling and collective management of irrigation sampling.Google Scholar
  15. Ministry for Ecology, Energy, Sustainable Development and the Sea. (2010). – Circular (in French) of 3 August 2010 on the reduction of quantitative disequilibria during water sampling and collective management of irrigation sampling in basins where the difference between abstracted volume during a five-yearly dry year and the volume that can be abstracted is over 30%.Google Scholar
  16. Préfet de la Région Midi-Pyrénées. (2011). – Notification des volumes prélevables sur la région Poitou-Charentes.Google Scholar
  17. Rinaudo, J. D., Montginoul, M., & Desprats, J. F. (2015). The development of private bore-wells as independent water supplies: Challenges for water utilities in France and Australia. In Q. Grafton et al. (Eds.), Understanding and managing urban water in transition (pp. 155–174). Dordrecht: Springer.CrossRefGoogle Scholar
  18. Thiéry, D. (2014). GARDÉNIA software, version 8.2. User Guide. BRGM/RP-62797-FR report, 126 p., 65 fig., 2 app.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BRGM (French Geological Survey)OrléansFrance

Personalised recommendations