A Computational-Hermeneutic Approach for Conceptual Explicitation

  • David FuenmayorEmail author
  • Christoph Benzmüller
Conference paper
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 49)


We present a computer-supported approach for the logical analysis and conceptual explicitation of argumentative discourse. Computational hermeneutics harnesses recent progresses in automated reasoning for higher-order logics and aims at formalizing natural-language argumentative discourse using flexible combinations of expressive non-classical logics. In doing so, it allows us to render explicit the tacit conceptualizations implicit in argumentative discursive practices. Our approach operates on networks of structured arguments and is iterative and two-layered. At one layer we search for logically correct formalizations for each of the individual arguments. At the next layer we select among those correct formalizations the ones which honor the argument’s dialectic role, i.e. attacking or supporting other arguments as intended. We operate at these two layers in parallel and continuously rate sentences’ formalizations by using, primarily, inferential adequacy criteria. An interpretive, logical theory will thus gradually evolve. This theory is composed of meaning postulates serving as explications for concepts playing a role in the analyzed arguments. Such a recursive, iterative approach to interpretation does justice to the inherent circularity of understanding: the whole is understood compositionally on the basis of its parts, while each part is understood only in the context of the whole (hermeneutic circle). We summarily discuss previous work on exemplary applications of human-in-the-loop computational hermeneutics in metaphysical discourse. We also discuss some of the main challenges involved in fully-automating our approach. By sketching some design ideas and reviewing relevant technologies, we argue for the technological feasibility of a highly-automated computational hermeneutics.


Computational philosophy Higher-order logic Theorem proving Logical analysis Hermeneutics Explication 


  1. 1.
    Basile V, Cabrio E, Schon C (2016) KNEWS: using logical and lexical semantics to extract knowledge from natural language. In: Proceedings of the European conference on artificial intelligence (ECAI) 2016 conferenceGoogle Scholar
  2. 2.
    Baumberger C, Brun G (2016) Dimensions of objectual understanding. In: Explaining understanding. New perspectives from epistemology and philosophy of science, pp 165–189Google Scholar
  3. 3.
    Baumgartner M, Lampert T (2008) Adequate formalization. Synthese 164(1):93–115CrossRefGoogle Scholar
  4. 4.
    Benzmüller C (2019) Universal (meta-)logical reasoning: recent successes. Sci Comput Program 172:48–62CrossRefGoogle Scholar
  5. 5.
    Benzmüller C, Andrews P (2019) Church’s type theory. In: Zalta EN (eds.) The stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University, summer 2019 editionGoogle Scholar
  6. 6.
    Benzmüller C, Brown C, Kohlhase M (2004) Higher-order semantics and extensionality. J Symbolic Logic 69(4):1027–1088CrossRefGoogle Scholar
  7. 7.
    Benzmüller C, Fuenmayor D (2018) Can computers help to sharpen our understanding of ontological arguments? In: Gosh S, Uppalari R, Rao KV, Agarwal V, Sharma S (eds) Mathematics and Reality. Proceedings of the 11th All India Students’ Conference on Science & Spiritual Quest (AISSQ). The Bhaktivedanta Institute, Kolkata, pp 195–226Google Scholar
  8. 8.
    Benzmüller C, Parent X, van der Torre L (2018) A deontic logic reasoning infrastructure. In: Manea F, Miller RG, Nowotka D (eds) Proceedings of the 14th conference on computability in Europe (CiE), LNCS, vol 10936, pp 60–69. SpringerGoogle Scholar
  9. 9.
    Benzmüller C, Paulson L (2010) Multimodal and intuitionistic logics in simple type theory. Logic J IGPL 18(6):881–892CrossRefGoogle Scholar
  10. 10.
    Benzmüller C, Paulson L (2013) Quantified multimodal logics in simple type theory. Log Univers 7(1):7–20 (Special Issue on Multimodal Logics)CrossRefGoogle Scholar
  11. 11.
    Benzmüller C, Scott DS (2019) Automating free logic in HOL, with an experimental application in category theory. J Autom ReasoningGoogle Scholar
  12. 12.
    Benzmüller C, Weber L, Woltzenlogel Paleo B (2017) Computer-assisted analysis of the Anderson-Hájek controversy. Log Univers 11(1):139–151CrossRefGoogle Scholar
  13. 13.
    Benzmüller C, Woltzenlogel Paleo B (2016) The inconsistency in Gödel’s ontological argument: a success story for AI in metaphysics. In: Kambhampati S (eds) IJCAI 2016, vol 1–3, pp 936–942. AAAI PressGoogle Scholar
  14. 14.
    Besnard P, Hunter A (2008) Elements of argumentation. MIT Press (2008)Google Scholar
  15. 15.
    Blanchette JC, Nipkow T (2010) Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann M, Paulson LC (eds) ITP 2010, vol 6172. LNCS. Springer, Heidelberg, pp 131–146. Scholar
  16. 16.
    Blau U (1978) Die dreiwertige Logik der Sprache: ihre Syntax, Semantik und Anwendung in der Sprachanalyse. Walter de GruyterGoogle Scholar
  17. 17.
    Bos J (2008) Wide-coverage semantic analysis with boxer. In: Bos J, Delmonte R (eds.) Semantics in text processing, STEP, 2008 Conference proceedings, Venice, Italy, 22–24 September 2008. Association for Computational Linguistics (2008).
  18. 18.
    Brandom RB (1994) Making it explicit: reasoning, representing, and discursive commitment. Harvard University PressGoogle Scholar
  19. 19.
    Brun G (2004) Die richtige Formel: Philosophische Probleme der logischenFormalisierung. Walter de GruyterGoogle Scholar
  20. 20.
    Brun G (2017) Conceptual re-engineering: from explication to reflective equilibrium. Synthese, pp 1–30Google Scholar
  21. 21.
    Budzynska K, Villata S (2018) Processing natural language argumentation. In: Baroni P, Gabbay D, Giacomin M, van der Torre L (eds) Handbook of formal argumentation, pp 577–627. SpringerGoogle Scholar
  22. 22.
    Burgess A, Plunkett D (2013) Conceptual ethics I & II. Philos Compass 8(12):1091–1110CrossRefGoogle Scholar
  23. 23.
    Carnap R (1947) Meaning and necessity: a study in semantics and modal logic. University of Chicago PressGoogle Scholar
  24. 24.
    Carnap R (1952) Meaning postulates. Philos Stud 3(5):65–73CrossRefGoogle Scholar
  25. 25.
    Davidson D (1994) Radical interpretation interpreted. Philos Persp 8:121–128CrossRefGoogle Scholar
  26. 26.
    Davidson D (2001) Essays on actions and events: philosophical essays, vol 1. Oxford University Press on DemandGoogle Scholar
  27. 27.
    Davidson D (2001) Inquiries into truth and interpretation: philosophical essays, vol 2. Oxford University PressGoogle Scholar
  28. 28.
    Dowty DR, Wall R, Peters S (2012) Introduction to montague semantics, vol 11. SpringerGoogle Scholar
  29. 29.
    Doyle J (1992) Reason maintenance and belief revision: foundations vs. coherence theories. Belief Revision 29:29–51CrossRefGoogle Scholar
  30. 30.
    Dung PM, Kowalski RA, Toni F (2009) Assumption-based argumentation. In: Argumentation in artificial intelligence, pp 199–218. SpringerGoogle Scholar
  31. 31.
    Elgin C (1999) Considered judgment. Princeton University PressGoogle Scholar
  32. 32.
    Epstein RL (1994) The semantic foundations of logic: predicate logic, vol 2. Oxford University PressGoogle Scholar
  33. 33.
    Fuenmayor D, Benzmüller C (2017) Automating emendations of the ontological argument in intensional higher-order modal logic. In: Kern-Isberner G, Fürnkranz J, Thimm M (eds) KI 2017: Advances in artificial intelligence. LNAI, vol 10505, pp 114–127. SpringerGoogle Scholar
  34. 34.
    Fuenmayor D, Benzmüller C (2017) Computer-assisted reconstruction and assessment of E. J. Lowe’s modal ontological argument. Archive of formal proofs, September 2017., Formal proof development
  35. 35.
    Fuenmayor D, Benzmüller C (2018) A case study on computational hermeneutics: E. J. Lowe’s modal ontological argument. J Appl Logics (IfCoLoG J Logics Appl) 5(7):1567–1603 (special issue on Formal Approaches to the Ontological Argument)Google Scholar
  36. 36.
    Fuenmayor D, Benzmüller C (2019) Computational hermeneutics: an integrated approach for the logical analysis of natural-language arguments. In: Liao B, Agotnes T, Wang YN (eds) Dynamics, uncertainty and reasoning: the second Chinese conference on logic and argumentationGoogle Scholar
  37. 37.
    Gadamer HG (1960) Gesammelte Werke, Bd. 1, Hermeneutik I: Wahrheit und Methode. J.C.B. Mohr (Paul Siebeck)Google Scholar
  38. 38.
    Gangemi A, Presutti V, Recupero DR, Nuzzolese AG, Draicchio F, Mongiovì M (2017) Semantic web machine reading with FRED. Seman Web 8(6):873–893CrossRefGoogle Scholar
  39. 39.
    Genesereth MR, Nilsson NJ (1987) Logical foundations of artificial intelligence. Morgan KaufmannGoogle Scholar
  40. 40.
    Goodman N (1983) Fact, fiction, and forecast. Harvard University PressGoogle Scholar
  41. 41.
    Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquisition 5(2):199–220CrossRefGoogle Scholar
  42. 42.
    Guarino N, Giaretta P (1995) Ontologies and knowledge bases towards a terminological clarification. In: Towards very large knowledge bases: knowledge building & knowledge sharing, vol 25, no 32, pp 307–317Google Scholar
  43. 43.
    Guarino N, Oberle D, Staab S (2009) What is an ontology? In: Handbook on ontologies, pp 1–17. SpringerGoogle Scholar
  44. 44.
    Lippi M, Torroni P (2016) Argumentation mining: state of the art and emerging trends. ACM Trans Internet Technol (TOIT) 16(2):10CrossRefGoogle Scholar
  45. 45.
    Lowe EJ (2013) A modal version of the ontological argument. In: Moreland JP, Sweis KA, Meister CV (eds) Debating Christian theism, chapter 4, pp 61–71. Oxford University PressGoogle Scholar
  46. 46.
    Nipkow T, Paulson L, Wenzel M. (2002) Isabelle/HOL: a proof assistant for higher-order logic. LNCS, lecture notes in computer science, vol 2283. SpringerGoogle Scholar
  47. 47.
    Novaes CD (2018) Carnapian explication and ameliorative analysis: a systematic comparison. Synthese, pp 1–24Google Scholar
  48. 48.
    Peregrin J (2014) Inferentialism: why rules matter. SpringerGoogle Scholar
  49. 49.
    Peregrin J, Svoboda V (2013) Criteria for logical formalization. Synthese 190(14):2897–2924CrossRefGoogle Scholar
  50. 50.
    Peregrin J, Svoboda V (2017) Reflective equilibrium and the principles of logical analysis: understanding the laws of logic. Routledge studies in contemporary philosophy. Taylor and FrancisGoogle Scholar
  51. 51.
    Quine WVO (1960) Word and object. MIT PressGoogle Scholar
  52. 52.
    Rawls J (2009) A theory of justice. Harvard University PressGoogle Scholar
  53. 53.
    Sainsbury M (1991) Logical forms: an introduction to philosophical logic. Blackwell PublishersGoogle Scholar
  54. 54.
    Studer R, Benjamins VR, Fensel D (1998) Knowledge engineering: principles and methods. Data Knowl Eng 25(1–2):161–197CrossRefGoogle Scholar
  55. 55.
    Sutcliffe G (2017) The TPTP problem library and associated infrastructure. From CNF to TH0, TPTP v6.4.0. J Autom Reason 59(4):483–502CrossRefGoogle Scholar
  56. 56.
    Tarski A (1956) The concept of truth in formalized languages. In: Logic, semantics, metamathematics, vol 2, pp 152–278Google Scholar
  57. 57.
    Uschold M (1996) Building ontologies: towards a unified methodology. In: Proceedings of 16th annual conference of the British computer society specialists group on expert systems. CiteseerGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Freie Universität BerlinBerlinGermany
  2. 2.University of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations