Advertisement

Defining a General Structure of Four Inferential Processes by Means of Four Pairs of Choices Concerning Two Basic Dichotomies

  • Antonino DragoEmail author
Conference paper
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 49)

Abstract

In previous papers I have characterized four ways of reasoning in Peirce’s philosophy, and four ways of reasoning in Computability Theory. I have established their correspondence on the basis of the four pairs of choices regarding two dichotomies, respectively the dichotomy between two kinds of Mathematics and the dichotomy between two kinds of Logic. In the present paper I introduce four principles of reasoning in theoretical Physics and I interpret also them by means of the four pairs of choices regarding the above two dichotomies. I show that there exists a meaningful correspondence among the previous three fourfold sets of elements. This convergence of the characteristic ways of reasoning within three very different fields of research - Peirce’s philosophy, Computability theory and physical theories - suggests that there exists a general-purpose structure of four ways of reasoning. This structure is recognized as applied by Mendeleev when he built his periodic table. Moreover, it is shown that a chemist applies all the above ways of reasoning at the same time. Peirce’s professional practice as a chemist applying at the same time this variety of reasoning explains his stubborn research into the variety of the possible inferences.

.

Keywords

Dichotomy on the kind of mathematics Dichotomy on the kind of logic Peirce’s four ways of reasoning of computability theory Four prime physical principles General structure of ways of reasoning Mendeleev’s ways of reasoning Chemical origin of peirce’s reasoning 

Notes

Acknowledgement

I thank Prof. David Braithwaite who corrected my poor English.

References

  1. Achinstein P (1993) How to defend a theory without testing it: Niels Bohr and the “logic of pursuit”. Midwest Stuides Philos. 18:90–120CrossRefGoogle Scholar
  2. Bishop E (1967) Foundations of constructive mathematics. McGraw-Hill, New YorkGoogle Scholar
  3. Carnot L (1803) Principes fondamentaux de l’équilibre et du mouvement. Deterville, ParisGoogle Scholar
  4. Chellas BF (1980) Modal logic. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. Davis M et al (1995) Computability, complexity, and languages: fundamentals of theoretical computer science. Academic Press, New YorkGoogle Scholar
  6. Drago A (1988) A characterization of Newtonian paradigm. In: Scheurer PB, Debrock G (eds) Newton’s scientific and philosophical legacy. Kluwer Academic Press, Boston, pp 239–252CrossRefGoogle Scholar
  7. Drago A (1989) La rivoluzione francese ha realizzato il “programma giacobino” di rifondazione di tutta la scienza. In: Società Italiana Progresso Scientifico: Atti della XL Riunione; L’età della rivoluzione e il progresso delle scienze, Bologna, pp. 335–342Google Scholar
  8. Drago A (1994) The modem fulfilment of Leibniz’ program for a Scientia generalis. In: Breger H (ed), VI International Kongress: Leibniz und Europa, Hannover, pp. 185-195Google Scholar
  9. Drago A (1996) Alternative mathematics and alternative theoretical physics: the method for linking them together. Epistemologia 19:33–50Google Scholar
  10. Drago A (2004) A new appraisal of old formulations of mechanics. Am J Phys 72(3):407–409CrossRefGoogle Scholar
  11. Drago A (2011) I quattro modelli della teoria meccanica. In: Toscano M, Giannini G, Giannetto E (eds) Intorno a Galileo: La storia della fisica e il punto di svolta Galíleiano, Guaraldi, Rimini, pp 181–190Google Scholar
  12. Drago A (2012) Pluralism in logic: the square of opposition, Leibniz’ principle of sufficient reason and Markov’s principle. In: Béziau J-Y, Jacquette D (eds) Around and beyond the square of opposition. Birkhaueser, Basel, pp 175–189CrossRefGoogle Scholar
  13. Drago A (2013) The emergence of two options from Einstein’s first paper on quanta. In: Pisano R, Capecchi D, Lukesova A (eds) Physics, astronomy and engineering. Critical problems in the history of science and society. Scientia Socialis Press, Siauliai, pp 227–234Google Scholar
  14. Drago A (2014) A logical model of Peirce’s abduction as suggested by various theories concerning unknown objects. In: Magnani L (ed) Model-based reasoning in science and technology: theoretical and cognitive issues. Springer, Heidelberg, pp 315–338CrossRefGoogle Scholar
  15. Drago A (2015) The four prime principles of theoretical physics and their roles in the history. Atti Fondazione Ronchi 70(6):657–668Google Scholar
  16. Drago A (2016) Defining Peirce’s reasoning processes against the background of the mathematical reasoning of computability theory. In: Magnani L, Casadio C (eds) Model-based reasoning in science and technology: logical, epistemological, and cognitive issues. Springer, Heidelberg, pp 375–398CrossRefGoogle Scholar
  17. Drago A (2017) Koyré’s revolutionary role in the historiography of science. In: Pisano R, Agassi J, Drozdova D (eds) Hypotheses and perspectives in the history and philosophy of science: homage to Alexandre Koyré 1892–1964. Springer, Heidelberg, pp 123–141Google Scholar
  18. Drago A, Manno SD (1989) Le ipotesi fondamentali della meccanica secondo Lazare Carnot. Epistemologia 12:305–330Google Scholar
  19. Drago A, Pisano R (2000) Interpretazione e ricostruzione delle Réflexions di Sadi Carnot mediante la logica non classica. Giornale di Fisica 41:195–215 (English translation in Atti Fond. Ronchi, 59 (2004), 615–644)Google Scholar
  20. Dugas R (1950) Histoire de la Mécanique. Dunod, ParisGoogle Scholar
  21. Dummett M (1977) Elements of intuitionism. Clarendon Press, OxfordGoogle Scholar
  22. Einstein A (1905a) Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 322(6):132–148Google Scholar
  23. Einstein A (1905b) Letter to Conrad Habicht, April 14thGoogle Scholar
  24. Fann KT (1970) Peirce’s Theory of Abduction. The Hague, MoutonCrossRefGoogle Scholar
  25. Grize J-B (1970) «Logique», in Logique et la connaissance scientifique. In: Piaget J (ed) Encyclopédie de la Pléyade. Gallimard, Paris, pp 135–288Google Scholar
  26. Grzegorczyk A (1964) Philosophical plausible formal interpretation of intuitionist logic. Indagationes Mathematicae 26:596–601CrossRefGoogle Scholar
  27. Horn L (2002) The Logic of logical double negation. In: Kato Y (ed) Proceedings of the Sophia Symposium on Negation. University of Sophia, Tokyo, pp 79–112Google Scholar
  28. Horn L (2010) Multiple negations in English and other languages. In: Horn L (ed) The expression of negation. de Gruyter, Mouton, pp 111–148CrossRefGoogle Scholar
  29. Kuhn TS (1977) Mathematics versus experimental tradition in the development of physical sciences. The essential tension: selected studies in scientific tradition and change. University of Chicago Press, Chicago, pp 31–65CrossRefGoogle Scholar
  30. Lavoisier AL (1862–1892), Oeuvres de Lavoisier. Imprimerie Imperiale, t. 1, ParisGoogle Scholar
  31. Leibniz GW (1710) Preface theodicy. Routledge, LondonGoogle Scholar
  32. Lobachevsky NI (1955) Geometrische Untersuchungen zur der Theorie der Parallelinien (orig. 1840). Berlin, Finkl. (English translation as an Appendix in Bonola R. (1955), Non-Euclidean Geometry. Dover, New York)Google Scholar
  33. Markov AA (1962) On constructive mathematics. Trudy Mathematichieskie Institut Steklov 67:8–14 English translation: 1971, Am Math Soc Trans 98(2):1–9Google Scholar
  34. Mendeleev DI (1889) Faraday lecture. In: Il sistema periodico degli elementi. Tecnos, Rome 2004, pp 99–127Google Scholar
  35. Mendeleev DI (1905) Principles of Chemistry (orig. 1871). Longmans, New YorkGoogle Scholar
  36. Mendeleev DI (2004) Il sistema periodico degli elementi. Teknos, RomaGoogle Scholar
  37. Newell A, Simon H (1967) Computer science as an empirical inquiry: symbols and search. Commun. ACM 19(3):126–133Google Scholar
  38. Peirce CS (1881) On the logic of numbers. Am J Math 4:85–95CrossRefGoogle Scholar
  39. Peirce CS (1887) Logical machines. Am J Psychol 1:165–170CrossRefGoogle Scholar
  40. Peirce CS (1968a) Questions concerning certain claimed human faculties. J Speculative Philos 2:103-114Google Scholar
  41. Peirce CS (1868b) Some consequences of four incapacities. J Speculative Philos 2:140–157Google Scholar
  42. Peirce CS (1869) Grounds of validity of the laws of logic: further consequences of four incapacities. J Speculative Philos 2:193–208 All collected in (Peirce 1951–1958, vol 2)Google Scholar
  43. Peirce CS (1958) Collected paper of Charles S Peirce, vol 8. Harvard, Cambridge University Press, Cambridge, p 1Google Scholar
  44. Prawitz D, Melmnaas P-E (1968) A survey of some connections between classical intuitionistic and minimal logic. In: Schmidt HA, Schütte K, Thiele H-J (eds) Contributions to mathematical logic. Elsevier, Amsterdam, pp 215–229Google Scholar
  45. Reichenbach H (1938) Experience and prediction. Chicago University Press, ChicagoGoogle Scholar
  46. Scerri ER (2007) The periodic table: its story and its significance. Oxford University Press, OxfordGoogle Scholar
  47. Troelstra A, van Dalen D (1988) Constructivism in mathematics, vol 1. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Naples University “Federico II”, INaplesItaly

Personalised recommendations