The Principles of Situational Control SEMS Group

  • Andrey E. GorodetskiyEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 261)


Problem statement: Solving the problems of situational control of SEMS modules in complex robotic systems (CRS) play an important role in the intellectualization of the CRS. The article describes and analyzes the principles of situational control SEMS group in CRS. Purpose: Statement of the problem of situational control group SEMS and analysis of the principles of situational control in terms of stochasticity and uncertainty of the environment of choice. Results: The concept of situational control is considered, the generalized mathematical description of a problem of situational control of group SEMS is received, the methodology and various approaches to the organization of situational control of group SEMS are analyzed. Practical significance: The possibility of realization of the proposed mathematical formulation of the problem of situational control of SEMS by means of computer technology with parallel organization of calculations is shown.


Situation control SEMS groups Selection environment Deterministic Stochastic and not fully defined constraints Fuzzy mathematical models Operations and algorithms for finding optimal solutions 



This work was financially supported by Russian Foundation for Basic Research, Grants 16-29-04424, 18-01-00076 and 19-08-00079.


  1. 1.
    Gorodetskiy, A.E., Tarasova, I.L.: Situational control a group of robots based on SEMS. In: Gorodetskiy, A.E., Tarasova, I.L. (eds.) Smart Electromechanical Systems: Group Interaction. Studies in Systems, Decision and Control, vol. 174, pp. 9–18. Springer International Publishing (2019).
  2. 2.
    Gorodetskiy, A.E., Kurbanov, V.G., Tarasova, I.L.: Decision-making in central nervous system of a robot. Inf. Control Syst. 1, 21–30 (2018). (in Russia).
  3. 3.
    Vorob’ev, V.V.: Logical inference and action planning elements in robot groups. In: Proceedings of 16th National Conference on Artificial Intelligence KII-2018, vol. 1, pp. 88–96, Moscow (2018). (in Russia)Google Scholar
  4. 4.
    Ivanov, D.YA., Shabanov, I.B.: Model of application of coalitions of intelligent mobile robots with limited communications. In: Proceedings of 16th National Conference on Artificial Intelligence KII-2018, vol. 1, pp. 97–105, Moscow (2018). (in Russia)Google Scholar
  5. 5.
    Pospelov, D.A.: Situation Management: Theory and Practice [Situacionnoe upravlenie: Teoriya i praktika], 286 p. Nauka, Moscow (1986). (in Russia)Google Scholar
  6. 6.
    Kunc, G., O Donnel, S.: Management: System and Situation Analysis of Control Functions [Upravlenie: sistemnyj i situacionnyj analiz upravlencheskih funkcij], 588 p. Progress, Moscow (2002). (in Russia)Google Scholar
  7. 7.
    Sokolov, B., Ivanov, D., Fridman, A.: Situational modelling for structural dynamics control of industry-business processes and supply chains. In: Sgurev, V., Hadjiski, M., Kacprzyk, J. (eds.) Intelligent Systems: From Theory to Practice, pp. 279–308. Springer-Verlag Berlin Heidelberg, London (2010)CrossRefGoogle Scholar
  8. 8.
    Friedman, A.Ya.: Situational Control of the Structure of Industrial and Natural Systems. Methods and Models. LAP, Saarbrucken, Germany (2015)Google Scholar
  9. 9.
    Mishin, S.P.: Optimal Control Hierarchies in Economic Systems [Optimal’ny’e ierarxii upravleniya v e’konomicheskix sistemax]. PMSOFT, Moscow (2004). (in Russia)Google Scholar
  10. 10.
    Kalyaev, I.A., Kapustyan, S.G., Gaiduk, A.R.: Self-organizing distributed control systems for groups of intelligent robots built on the basis of the network model [Samoorganizuyushhiesya raspredelenny’e sistemy’ upravleniya gruppami intellektual’ny’x robotov, postroenny’e na osnove setevoj modeli]. UBS 30(1), 605–639 (2010). (in Russia)Google Scholar
  11. 11.
    Kalyaev, I.A., Gaiduk, A.R., Kapustian, S.G.: Control of a team of intellectual objects based on schooling principles [Upravlenie kollektivom intellektual’ny’x ob”ektov na osnove stajny’x principov]. Bull. Sci. Cent. Russ. Acad. Sci. 1(2), 20–27 (2005). (in Russia)Google Scholar
  12. 12.
    Kapustian, S.G.: Decentralized method of collective distribution of goals in the group of robots [Decentralizovanny’j metod kollektivnogo raspredeleniya celej v gruppe robotov]. In: Kapustian, S.G. (ed.) Proceedings of the Higher Educational Institutions, Electronics, no. 2, pp. 84–91 (2006). (in Russia)Google Scholar
  13. 13.
    Kalyaev, I.A.: Principles of collective decision making and control in the group interaction of robots [Principy’ kollektivnogo prinyatiya resheniya i upravleniya pri gruppovom vzaimodejstvii robotov]. In: Mobile Robots and Mechatronic Systems: Material Scientific Schools Conference, pp. 204–221. Publishing House of Moscow State University, Moscow (2000). (in Russia)Google Scholar
  14. 14.
    Kapustian, S.G.: The method of organizing multi-agent interaction in distributed control systems of a group of robots when solving the area coverage problem [Metod organizacii mul’tiagentnogo vzaimodejstviya v raspredelenny’x sistemax upravleniya gruppoj robotov pri reshenii zadachi pokry’tiya ploshhadi]. Artif. Intell. 3, 715–727 (2004). (in Russia)Google Scholar
  15. 15.
    Fridman, A.Ya.: SEMS-based control in locally organized hierarchical structures of robots collectives. In: Gorodetskiy, A.E., Kurbanov, V.G. (eds.) Smart Electromechanical Systems: The Central Nervous System. Studies in Systems, Decision and Control, vol. 95, pp. 31–47. Springer International Publishing Switzerland (2017)Google Scholar
  16. 16.
    Vasiliev, S.N., et al.: Intellectual Control of Dynamic Systems [Intellektual’noe upravlenie dinamicheskimi sistemami], 352 p. FIZMATLIT, Moscow (2000). (in Russia)Google Scholar
  17. 17.
    Prishchepa, M.V.: Development of a user profile with account of the psychological aspects of human interaction with an information mobile robot [Razrabotka profilya pol’zovatelya s uchetom psixologicheskix aspektov vzaimodejstviya cheloveka s informacionny’m mobil’ny’m robotom]. Tr. SPIIRAN 21, 56–70 (2012). (in Russia)Google Scholar
  18. 18.
    Ladygina, V.: Social and ethical problems of robotics [Social no-eticheskie problemy robototechniki]. Vyatka State Univ. Bull. 7, 27–31 (2017). (in Russia)Google Scholar
  19. 19.
    Karpov, V.E.: Emotions and temperament of robots: behavioral aspects. J. Comput. Syst. Sci. Int. 5, 126–145 (2016). (in Russia) Google Scholar
  20. 20.
    Gorodetskiy, A.E., Tarasova, I.L.: Fuzzy Mathematical Modeling of Poorly Formalized Processes and Systems [Nechetkoe matematicheskoe modelirovanie ploxo formalizuemy’x processov i sistem], 336 p. SPb Publishing House Polytechnic, Un-ta (2010). (in Russia)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Problems of Mechanical Engineering, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations