Advertisement

Preoperative Planning for Guidewires Employing Shape-Regularized Segmentation and Optimized Trajectories

  • Johannes FauserEmail author
  • Moritz Fuchs
  • Ahmed Ghazy
  • Bernhard Dorweiler
  • Anirban Mukhopadhyay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11796)

Abstract

Upcoming robotic interventions for endovascular procedures can significantly reduce the high radiation exposure currently endured by surgeons. Robotically driven guidewires replace manual insertion and leave the surgeon the task of planning optimal trajectories based on segmentation of associated risk structures. However, such a pipeline brings new challenges. While Deep learning based segmentation such as U-Net can achieve outstanding Dice scores, it fails to provide suitable results for trajectory planning in annotation scarce environments. We propose a preoperative pipeline featuring a shape regularized U-Net that extracts coherent anatomies from pixelwise predictions. It uses Rapidly-exploring Random Trees together with convex optimization for locally optimal planning. Our experiments on two publicly available data sets evaluate the complete pipeline. We show the benefits of our approach in a functional evaluation including both segmentation and planning metrics: While we achieve comparable Dice, Hausdorff distances and planning metrics such as success rate of motion planning algorithms are significantly better than U-Net.

Keywords

Preoperative planning Shape regularization Functional evaluation Endovascular procedures 

References

  1. 1.
    Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)CrossRefGoogle Scholar
  2. 2.
    Ganet, F., et al.: Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback. Sci. Rep. 5 (2015). Article number: 18593Google Scholar
  3. 3.
    Chi, W., et al.: Trajectory optimization of robot-assisted endovascular catheterization with reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3875–3881, October 2018Google Scholar
  4. 4.
    Azizi, A., Tremblay, C., Martel, S.: Trajectory planning for vascular navigation from 3D angiography images and vessel centerline data. In: 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pp. 1–6, July 2017Google Scholar
  5. 5.
    Fauser, J., Stenin, I., Kristin, J., Klenzner, T., Schipper, J., Mukhopadhyay, A.: Optimizing clearance of bézier spline trajectories for minimally-invasive surgery. In: Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, Shenzen, China, 13–17 October 2019. Springer, Cham (2019)Google Scholar
  6. 6.
    Petitjean, C.: Segmentation of THoracic Organs at Risk in CT images. In: Proceedings of the 2019 Challenge on Segmentation of THoracic Organs at Risk in CT Images (SegTHOR 2019), vol. 2348 (2019)Google Scholar
  7. 7.
    Fauser, J., et al.: Toward an automatic preoperative pipeline for image-guided temporal bone surgery. Int. J. Comput. Assist. Radiol. Surg. 14(6), 967–976 (2019)CrossRefGoogle Scholar
  8. 8.
    Tack, A., Mukhopadhyay, A., Zachow, S.: Knee menisci segmentation using convolutional neural networks: data from the osteoarthritis initiative. Osteoarthritis Cartilage 26(5), 680–688 (2018)CrossRefGoogle Scholar
  9. 9.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  10. 10.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  11. 11.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  12. 12.
    Fauser, J., Sakas, G., Mukhopadhyay, A.: Planning nonlinear access paths for temporal bone surgery. Int. J. Comput. Assist. Radiol. Surg. 13(5), 637–646 (2018)CrossRefGoogle Scholar
  13. 13.
    Schulman, J., et al.: Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Res. 33(9), 1251–1270 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhuang, X., et al.: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. CoRR abs/1902.07880 (2019)Google Scholar
  15. 15.
    Valette, S., Chassery, J.M.: Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening. Comput. Graph. Forum 23, 381–390 (2004)CrossRefGoogle Scholar
  16. 16.
    Kirschner, M.: The probabilistic active shape model: from model construction to flexible medical image segmentation. Ph.D. thesis, TU Darmstadt (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johannes Fauser
    • 1
    Email author
  • Moritz Fuchs
    • 1
  • Ahmed Ghazy
    • 2
  • Bernhard Dorweiler
    • 2
  • Anirban Mukhopadhyay
    • 1
  1. 1.Department of Computer ScienceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.University Medical CenterJohannes Gutenberg University MainzMainzGermany

Personalised recommendations