Advertisement

Limiting Values of the Stability Margins in the Parametric Synthesis of PID-Controllers

  • Goerun Ayazyan
  • Elena TaushevaEmail author
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 260)

Abstract

The problem of parametric synthesis of PID controllers of integer and fractional orders is solved. PID-controllers are an integral part of many cyber-physical systems. Two well-known methods of synthesis are considered—for a relative stability margin and a maximum value of the sensitivity function. Algorithms have been developed for calculating the limiting values of the differential gain of the controller, at which the boundary of the region of a given stability margin has a cusp. In the case of using the criterion for low-frequency disturbance rejection (LFDR), the limiting values of the relative stability margin and the maximum value of the sensitivity function are determined.

Keywords

PID-controller Fractional order Relative stability margin Maximum value of the sensitivity function Cyber-physical systems Maple 

References

  1. 1.
    Åström, K.J., Hägglund, T.: Advanced PID control, p. 460. ISA-The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC (2006)Google Scholar
  2. 2.
    Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13, 559–576 (2005)CrossRefGoogle Scholar
  3. 3.
    Wallén, A., Åström, K.J., Hägglun, T.: Loop-shaping design of PID controllers with constant Ti/Td ratio. Asian J. Control. 4, 403–409 (2008)CrossRefGoogle Scholar
  4. 4.
    Åström, K.J., Hägglund, T.: The future of PID control. IFAC Proc. Vol. 33, 19–30 (2000)CrossRefGoogle Scholar
  5. 5.
    Tan, W., Liu, J., Chen, T., Marquez, H.J.: Comparison of some well-known PID tuning formulas. Comput. Chem. Eng. 30, 1416–1423 (2006)CrossRefGoogle Scholar
  6. 6.
    Tang, W., Wang, Q.G., Lu, X., Zhang, Z.: Why Ti = 4Td for PID controller tuning. Robotics and Vision 2006 9th International Conference on Control, pp. 1–2. Automation. IEEE, Singapore (2006)Google Scholar
  7. 7.
    O’Dwyer A.: An overview of tuning rules for the PI and PID continuous-time control of time-delayed Single-Input, Single-Output (SISO) Processes. In: Vilanova R., Visioli A. (eds.) PID Control in the Third Millennium: Lessons Learned and New Approaches Springer London, pp. 3–44. London (2012)Google Scholar
  8. 8.
    Yadaiah, N., Malladi, S. (2013) An optimized relation between Ti and Td in Modified Ziegler Nichols PID controller tuning. In: 2013 IEEE International Conference on Control Applications (CCA), pp. 1275–1280Google Scholar
  9. 9.
    Leva, A., Maggio, M.: Model-Based PI(D) Autotuning. In: Vilanova, R., Visioli, A. (eds.) PID Control in the Third Millennium: Lessons Learned and New Approaches, pp. 45–73. Springer, London, London (2012)CrossRefGoogle Scholar
  10. 10.
    Pecharromán, R.R., Pagola, F.L.: Control design for PID controllers auto-tuning based on improved identification. IFAC Proc. Vol. 33, 85–90 (2000)CrossRefGoogle Scholar
  11. 11.
    Smirnov, N.I., Sabanin, V.R., Repin, A.I.: Sensitivity and robust tuning of PID controllers with real differentiation. Therm. Eng. 54, 777–785 (2007)CrossRefGoogle Scholar
  12. 12.
    Ozyetkin, M.M., Onat, C., Tan, N.: PID tuning method for integrating processes having time delay and inverse response. In: IFAC-PapersOnLine, 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control PID 2018, vol. 51, pp. 274–279 (2018)Google Scholar
  13. 13.
    Ayazyan, G.K., Novozhenin, A.Yu., Tausheva, E.V.: Parametric synthesis of PID regulators for a given degree of oscillation (in Russian). In: XII All-Russian Meeting on the Problems of Control (VSPU-2014). Russia, Institute of Control Sciences V.A. Trapeznikova RAS, pp. 147–159 (2014)Google Scholar
  14. 14.
    Ayazyan, G.K.: Calculation of automatic systems with typical control algorithms, p. 136. Publishing house UNI, Ufa (1989). (in Russian)Google Scholar
  15. 15.
    Ayazyan, G.K., Tausheva, E.V., Shaymuhametova, M.R.: Applying symbolic computing system maple for parametric synthesis of controllers (in Russian). In: VI International Conference. Mathematics, Its Applications and Mathematical Education (MAME’17), pp. 59–64. Russia, Ulan-Ude (2017)Google Scholar
  16. 16.
    Volgin, V.V.: Concerning determination of optimum adjustment of PID-regulators. Avtomat. i Telemekh. 23, 620–630 (1962)Google Scholar
  17. 17.
    Safronova, I.N., Volgin, V.V.: The method of multiple roots in optimizing a control-system with a PID-algorithm. Therm. Eng. 36, 580–582 (1989)Google Scholar
  18. 18.
    Åström, K.J., Panagopoulos, H., Hägglund, T.: Design of PI controllers based on non-convex optimization. Automatica 34, 585–601 (1998)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bruce, J.W., Giblin, P.J.: Curves and singularities: a geometrical introduction to singularity theory, 2nd ed. ed. Cambridge University Press, Cambridge [England] ; New York, NY, USA, 321 p, (1992)Google Scholar
  20. 20.
    Lord, E.A.: The mathematical description of shape and form: E. A. Lord and C. B. Wilson, Ellis Horwood series in mathematics and its applications. (vol. 260). Halsted Press, Chichester, West Sussex, Ellis Horwood, New York (1984)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ufa State Petroleum Technological UniversityUfaRussia

Personalised recommendations