Advertisement

Robust Control System Based on Traditional PID Control Laws

  • Ivan V. Gogol
  • Olga A. RemizovaEmail author
  • Vladislav V. Syrokvashin
  • Aleksandr L. Fokin
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 260)

Abstract

The chapter considers a new approach for designing robust control systems based on traditional PID control laws for linear adaptive control systems for SISO objects (single input–single output), with a lag in control in the presence of parametric uncertainty and lag value. The technique of transition from real models of the object to reduced models depending on the influence of the dominant time constant is considered. An algorithm for the synthesis of tuning parameters of regulators based on a compromise between the requirements of speed and coarseness of a closed system is developed. To demonstrate the performance of this method, the main parameters of a traditional PI controller for a real control object with a dominant time constant and without, represented by a mathematical model in the form of a transfer function, and are calculated as examples.

Keywords

Linear SISO objects Robust control systems PID control laws Predictor Disturbing influence Parametric uncertainty 

References

  1. 1.
    Dean, S.: Regret bounds for robust adaptive control of the linear quadratic regulator. In: Dean, S., Mania, H., Manti, N., Recht, B., Tu, S. (eds.) Advances in Neural Information Processing Systems, vol. 31 (2018)Google Scholar
  2. 2.
    Escalante, F.: Robust Kalman filter and robust regulator for discrete-time markovian jump linear systems: control of series elastic actuators. In: Escalante, F.M., Jutinico, A.L., Jaimes, J.C., Siqueira, A.A.G., Terra, M.H. (eds.) IEEE Conference on Control Technology and Applications, pp. 976–981 (2018)Google Scholar
  3. 3.
    Rudposhti, M.: Design of robust optimal regulator considering state and control nonlinearities. In: Rudposhti, M.K., Nekoui, M.A., Teshnehlab, M. (eds.) Systems Science & Control Engineering, vol. 6, № 1, pp. 150–159 (2018)Google Scholar
  4. 4.
    Bortolin, D.: Recursive robust regulator for uncertain linear systems with random state delay based on Markovian jump model. In: Bortolin, D.C., Gagliardi, G.M., Terra, M.H. (eds) Proceedings of 57th IEEE Conference on Decision and Control (CDC) (2018)Google Scholar
  5. 5.
    Hekimoglu, B.: Sine-cosine algorithm-based optimization for automatic voltage regulator system. In: Hekimoglu, B. (ed.) Transactions of the Institute of Measurement and Control, vol. 41, № 6, pp. 1761–1771 (2019)Google Scholar
  6. 6.
    Soliman, M.: Linear-quadratic regulator algorithm-based cascaded control scheme for performance enhancement of a variable-speed wind energy conversion system. In: Soliman, M.A., Hasanien, H.M., Azazi, H.Z., El-Kholy, E.E., Mahmoud, S.A. (eds.) Arabian Journal for Science and Engineering, vol. 44, № 3, pp. 2281–2293 (2019)Google Scholar
  7. 7.
    Ayten, K.: Real-time implementation of self-tuning regulator control technique for coupled tank industrial process system. In: Ayten, K.K., Dumlu, A., Kaleli, A. (eds.) Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, vol. 232, № 8, pp. 1039–1052 (2018)Google Scholar
  8. 8.
    Basin, M.: Continuous fixed-time convergent regulator for dynamic systems with unbounded disturbances. In: Basin, M., Rodriguez-Ramirez, P., Ding, S.X., Daszenies, T., Shtessel, Y. (eds.) Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 355, № 5, pp. 2762–2778 (2018)Google Scholar
  9. 9.
    Pradhan, R.: Design of PID controller for automatic voltage regulator system using Ant Lion Optimizer. In: Pradhan, R., Majhi, S.K., Pati, B.B. (eds.) World Journal of Engineering, vol. 15, № 3, pp. 373–387 (2018)Google Scholar
  10. 10.
    Lian, K.: Robust fuzzy output regulator design for nonlinear systems without virtual desired variable calculation. In: Lian, K.Y., Liu, C.H., Chiu, C.S. (eds.) Control Engineering and Applied Informatics, vol. 19, № 1, pp. 27–36 (2017)Google Scholar
  11. 11.
    Ilyushin, Y.: Development of a technique for the synthesis of a pulsed regulator of a distributed control system. In: Ilyushin, Y.V., Novozhilov, I.M. (eds.) Proceedings of IEEE II International Conference on Control in Technical Systems (CTS), pp. 168–171 (2017)Google Scholar
  12. 12.
    Danik, Y.: The robustness of the stabilizing regulator for quasilinear discrete systems with state dependent coefficients. In: Danik, Y.E., Dmitriev, M.G. (eds.) Proceedings of International Siberian Conference on Control and Communications (SIBCON) (2016)Google Scholar
  13. 13.
    Singh, A.: An extended linear quadratic regulator and its application for control of power system dynamics. In: Singh, A.K., Pal, B.C. (eds.) Proceedings of IEEE First International Conference on Control, Measurement and Instrumentation (CMI), pp. 110–114 (2016)Google Scholar
  14. 14.
    Lian, K.: Simplified robust fuzzy output regulator design for discrete-time nonlinear systems. In: Lian, K.Y., Liu, C.H., Chiu, C.S. (eds.) Journal of Intelligent & Fuzzy Systems, vol. 31, № 3, pp. 1499–1511 (2016)Google Scholar
  15. 15.
    Victor, M.: Model-Reference Robust Tuning of PID Controllers. In: Victor, M., Vilanova, R. (eds.). Springer International Publishing (2016)Google Scholar
  16. 16.
    Papadopoulos, K.: PID Controller Tuning Using the Magnitude Optimum Criterion. Springer International Publishing, Heidelberg (2015)CrossRefGoogle Scholar
  17. 17.
    Remizova, O., Syrokvashin, V.V., Fokin, A.L.: Sintez robastnyh sistem upravlenija s tipovymi reguljatorami (Synthesis of robust control systems with standard controllers). Izv. vuzov. Priborostroenie, vol. 58, №12, pp. 12–18 (2015) (in Russian)Google Scholar
  18. 18.
    O’Dwyer A.: A summary of PI and PID controller tuning rules for processes with time delay. Part 1: PI tuning rules. In: Preprints of Proceedings of PID ’00: IFAC Workshop on Digital Control. Terrassa, Spain, pp. 175–180, April 2000Google Scholar
  19. 19.
    O’Dwyer, A.: Handbook of PI and PID controller tuning rules, 2nd edn. Imperial College Press, London (2006)CrossRefGoogle Scholar
  20. 20.
    O’Dwyer, A.: Handbook of PI and PID controller tuning rules, 3rd edn. Imperial College Press, London (2009)CrossRefGoogle Scholar
  21. 21.
    Gogol, I., Remizova, O., Syrokvashin, V., Fokin, A.: Sintez robastnyh reguljatorov dlja upravlenija tehnologicheskimi processami v klasse tradicionnyh zakonov regulirovanija (Synthesis of robust regulators to control technological processes in the class of traditional laws of regulation), Izv. SPbGTI(TU), № 44, pp. 98–105 (2018) (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ivan V. Gogol
    • 1
  • Olga A. Remizova
    • 1
    Email author
  • Vladislav V. Syrokvashin
    • 1
  • Aleksandr L. Fokin
    • 1
  1. 1.Saint-Petersburg State Institute of TechnologySaint-PetersburgRussia

Personalised recommendations