Skip to main content

Utilization of New Technologies in the Production of Pharmaceutical Olive Oil

  • Conference paper
  • First Online:
GeNeDis 2018

Abstract

Olive oil is a key ingredient in the Mediterranean diet and offers many health benefits. However, many factors affect the quality and quantity of olive oil such as olive tree diseases and olive-related pests. Unfortunately, the procedure of identifying pests or the outbreak of a disease is time-consuming, and it depends heavily on the size of the olive grove. Through the use of ICT, remote monitoring of the olive grove can be achieved, by collecting environment-related data and having an overview of the olive grove’s overall health. In this paper we propose a low-cost dense network of sensors that collects daily data regarding the olive grove, thus, providing the possibility to prevent infestation of olive fruit fly and/or the outbreak of olive tree-related disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://playground.arduino.cc/Main/DHTLib

References

  • Barrenetxea G, Ingelrest F, Schaefer G, Vetterli M, Couach O, Parlange M (2008) SensorScope: out-of-the-box environmental monitoring. In: Proceeding of ACM/IEEE IPSN, St. Louis, MO, USA, p 332–343

    Google Scholar 

  • Broufas GD, Pappas ML, Koveos DS (2009) Effect of relative humidity on longevity, ovarian maturation, and egg production in the olive fruit Fly (Diptera: Tephritidae). Ann Entomol Soc Am 102(1):70–75. https://doi.org/10.1603/008.102.0107

    Article  Google Scholar 

  • Deshmukh AD, Shinde UB (2016) A low cost environment monitoring system using raspberry Pi and arduino with Zigbee. In: Inventive Computation Technologies (ICICT), international conference, Coimbatore, India on. vol 3, IEEE

    Google Scholar 

  • Eurostat. Agri-Environmental Indicator—Cropping Patterns (2017) Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_cropping_patterns. Accessed 25 Sept 2018

  • Fletcher BS (1989) Temperature–development rate relationships of the immature stages and adults of tephritid fruit flies, World Crop Pests: fruit flies—their biology, natural enemies and control, ed. AS Robinson, G Hooper, Amsterdam, Elsevier 3A:273–289

    Google Scholar 

  • Fogher C, Busconi M, Sebastiani L, Bracci T (2010) Chapter 2—Olive genomics. In: Preedy VR, Watson RR (eds) Olives and olive oil in health and disease prevention. Academic Press, Cambridge, pp 17–24

    Chapter  Google Scholar 

  • Gaddam A (2014) Designing a wireless sensors network for monitoring and predicting droughts. ICST 20140: 8th International Conference on Sensing Technology, Liverpool, UK, 2-4 September 2014

    Google Scholar 

  • Genc H, Nation JL (2008) Survival and development of Bactrocera oleae Gmelin (Diptera: Tephritidae) immature stages at four temperatures in the laboratory. Afr J Biotechnol 7:2495–2500

    Google Scholar 

  • Mesas-Carrascosa FJ, Santano DV, Meroño JE, de la Orden MS, García-Ferrer A (2015) Open source hardware to monitor environmental parameters in precision agriculture. Biosyst Eng 137:73–83

    Article  Google Scholar 

  • Pappas ML, Broufas GD, Koufali N, Pieri P, Koveos DS (2011) Effect of heat stress on survival and reproduction of the olive fruit fly Bactrocera (Dacus) oleae. J Appl Entomol 135:359–366

    Article  Google Scholar 

  • Paul M. Vossen: peacock spot and cercospora foliar disease on olive. http://cesonoma.ucanr.edu/files/27173.pdf

  • Sedef NE, Sibel K (2014) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 67(11):632–638. https://doi.org/10.1111/j.1753-4887.2009.00248.x

    Article  Google Scholar 

  • Tsitsipis JA (1977) Effect of constant temperatures on eggs of olive fruit fly, Dacus oleae (Diptera: Tephritidae). Ann Zool Ecol Anim 9:133–139

    Google Scholar 

  • Tsitsipis JA (1980) Effect of constant temperatures on larval and pupal development of olive fruit flies reared on artificial diet. Environ Entomol 9:764–768

    Article  Google Scholar 

  • Yokoyama VY, Rendon RA, Sivinski J (2006) Biological control of olive fruit fly (Diptera: Tephritidae) by Reseases of Psyttalia cf. concolor (Hymenoptera: Braconidae) in California, Parasitoid longevity in presence of the host, and host status of walnut husk fly. In: Proceedings of the 7th international symposium on fruit flies of economic importance, Salvador, p 157–164

    Google Scholar 

Download references

Acknowledgments

The financial support of the European Union and Greece (Partnership Agreement for the Development Framework 2014–2020) under the Regional Operational Programme Ionian Islands 2014–2020 for the project “Olive Observer” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romanos Kalamatianos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vlachos, I., Kalamatianos, R., Karydis, I., Spiridonidou, A., Avlonitis, M. (2020). Utilization of New Technologies in the Production of Pharmaceutical Olive Oil. In: Vlamos, P. (eds) GeNeDis 2018. Advances in Experimental Medicine and Biology, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-32622-7_22

Download citation

Publish with us

Policies and ethics