Skip to main content

Multi-scale Deep Convolutional Neural Networks for Emphysema Classification and Quantification

  • Chapter
  • First Online:
Deep Learning in Healthcare

Abstract

In this work, we aim at classification and quantification of emphysema in computed tomography (CT) images of lungs. Most previous works are limited to extracting low-level features or mid-level features without enough high-level information. Moreover, these approaches do not take the characteristics (scales) of different emphysema into account, which are crucial for feature extraction. In contrast to previous works, we propose a novel deep learning method based on multi-scale deep convolutional neural networks. There are three contributions for this paper. First, we propose to use a base residual network with 20 layers to extract more high-level information. Second, we incorporate multi-scale information into our deep neural networks so as to take full consideration of the characteristics of different emphysema. A 92.68% classification accuracy is achieved on our original dataset. Finally, based on the classification results, we also perform the quantitative analysis of emphysema in 50 subjects by correlating the quantitative results (the area percentage of each class) with pulmonary functions. We show that centrilobular emphysema (CLE) and panlobular emphysema (PLE) have strong correlation with the pulmonary functions and the sum of CLE and PLE can be used as a new and accurate measure of emphysema severity instead of the conventional measure (sum of all subtypes of emphysema). The correlations between the new measure and various pulmonary functions are up to |r| \(= 0.922\) (r is correlation coefficient).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mannino, D.M., Kiri, V.A.: Changing the burden of COPD mortality. Int. J. Chron. Obstruct. Pulmon. Dis. 1, 219–233 (2006)

    Google Scholar 

  2. Takahashi, M., Fukuoka, J., Nitta, N., Takazakura, R., Nagatani, Y., Murakami, Y., Murata, K.: Imaging of pulmonary emphysema: a pictorial review. Int. J. Chron. Obstruct. Pulmon. Dis. 3, 193–204 (2008)

    Article  Google Scholar 

  3. Lynch, D.A., Austin, J.H., Hogg, J.C., Grenier, P.A., Kauczor, H.U., Bankier, A.A., Coxson, H.O.: CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology 277, 192–205 (2015)

    Article  Google Scholar 

  4. Smith, B.M., Austin, J.H., Newell Jr., J.D., D’Souza, B.M., Rozenshtein, A., Hoffman, E.A., Barr, R.G.: Pulmonary emphysema subtypes on computed tomography: the MESA COPD study. Am. J. Med. 127, 94–e7 (2014)

    Article  Google Scholar 

  5. Shaker, S.B., von Wachenfeldt, K.A., Larsson, S., Mile, I., Persdotter, S., Dahlbäck, M., Fehniger, T.E.: Identification of patients with chronic obstructive pulmonary disease (COPD) by measurement of plasma biomarkers. Clin. Respir. J. 2, 17–25 (2008)

    Article  Google Scholar 

  6. Yang, J., Angelini, E.D., Smith, B.M., Austin, J.H., Hoffman, E.A., Bluemke, D.A., Laine, A.F.: Explaining radiological emphysema subtypes with unsupervised texture prototypes: MESA COPD study. In: Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging, pp. 69–80. Springer, Cham (2016)

    Chapter  Google Scholar 

  7. Sorensen, L., Shaker, S.B., De Bruijne, M.: Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans. Med. Imaging 29, 559–569 (2010)

    Article  Google Scholar 

  8. Binder, P., Batmanghelich, N.K., Estépar, R.S.J., Golland, P.: Unsupervised discovery of emphysema subtypes in a large clinical cohort. In: International Workshop on Machine Learning in Medical Imaging, pp. 180–187. Springer, Cham (2016)

    Chapter  Google Scholar 

  9. Häme, Y., Angelini, E.D., Parikh, M.A., Smith, B.M., Hoffman, E.A., Barr, R.G., Laine, A.F.: Sparse sampling and unsupervised learning of lung texture patterns in pulmonary emphysema: MESA COPD study. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 109–113 (2015)

    Google Scholar 

  10. Song, J., Yang, J., Smith, B., Balte, P., Hoffman, E.A., Barr, R.G., Angelini, E.D.: Generative method to discover emphysema subtypes with unsupervised learning using lung macroscopic patterns (LMPS): the MESA COPD study. In: Proceedings of the IEEE International Symposium on Biomedical Imaging. pp. 375–378 (2017)

    Google Scholar 

  11. Yang, J., Angelini, E.D., Balte, P.P., Hoffman, E.A., Austin, J.H., Smith, B.M., Laine, A.F.: Unsupervised discovery of spatially-informed lung texture patterns for pulmonary emphysema: the MESA COPD study. In: Proceedings of the MICCAI, pp. 116–124 (2017)

    Chapter  Google Scholar 

  12. Mendoza, C.S., Washko, G.R., Ross, J.C., Diaz, A.A., Lynch, D.A., Crapo, J.D., Estépar, R.S.J.: Emphysema quantification in a multi-scanner HRCT cohort using local intensity distributions. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 474–477 (2012)

    Google Scholar 

  13. Uppaluri, R., Mitsa, T., Sonka, M., Hoffman, E.A., McLennan, G.: Quantification of pulmonary emphysema from lung computed tomography images. Amer. J. Respir. Crit. Care Med. 156, 248–254 (1997)

    Article  Google Scholar 

  14. Xu, Y., Sonka, M., McLennan, G., Guo, J., Hoffman, E.A.: MDCT-based 3D texture classification of emphysema and early smoking related lung pathologies. IEEE Trans. Med. Imaging 25, 464–475 (2006)

    Article  Google Scholar 

  15. Park, Y.S., Seo, J.B., Kim, N., Chae, E.J., Oh, Y.M., Do Lee, S., Kang, S.H.: Texture-based quantification of pulmonary emphysema on high-resolution computed tomography: comparison with density-based quantification and correlation with pulmonary function. Invest. Radiol. 43, 395–402 (2008)

    Article  Google Scholar 

  16. Prasad, M., Sowmya, A., Wilson, P.: Multi-level classification of emphysema in HRCT lung images. Pattern Anal. Appl. 12, 9–20 (2009)

    Article  MathSciNet  Google Scholar 

  17. Peng, L., Lin, L., Hu, H., Ling, X., Wang, D., Han, X., Chen, Y.W.: Joint weber-based rotation invariant uniform local ternary pattern for classification of pulmonary emphysema in CT images. In: Proceedigs of the International Conference on Image Processing, pp. 2050–2054 (2017)

    Google Scholar 

  18. Gangeh, M.J., Sørensen, L., Shaker, S.B., Kamel, M.S., De Bruijne, M., Loog, M.: A texton-based approach for the classfication of lung parenchyma in CT images. In: Proceedings of the MICCAI, pp. 595–602 (2010)

    Chapter  Google Scholar 

  19. Asherov, M., Diamant, I., Greenspan, H.: Lung texture classification using bag of visual words. In: Proceedings of the SPIE Medical Imaging (2014)

    Google Scholar 

  20. Yang, J., Feng, X., Angelini, E.D., Laine, A.F.: Texton and sparse representation based texture classification of lung parenchyma in CT images. In: Proceedings of the EMBC, pp. 1276–1279 (2016)

    Google Scholar 

  21. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  22. Dou, Q., Chen, H., Yu, L., Qin, J., Heng, P.A.: Multilevel contextual 3-d cnns for false positive reduction in pulmonary nodule detection. IEEE Trans. Biomed. Eng. 64, 1558–1567 (2017)

    Article  Google Scholar 

  23. Setio, A.A.A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., Van Riel, S.J., Van, G.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35, 1160–1169 (2016)

    Article  Google Scholar 

  24. Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S.: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35, 1207–1216 (2016)

    Article  Google Scholar 

  25. Wang, Q., Zheng, Y., Yang, G., Jin, W., Chen, X., Yin, Y.: Multiscale rotation-invariant convolutional neural networks for lung texture classification. IEEE J. Biomed. Health Inform. 1–1 (2017)

    Google Scholar 

  26. Hoo-Chang, S., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298 (2016)

    Article  Google Scholar 

  27. Gao, M., Xu, Z., Lu, L., Harrison, A.P., Summers, R.M., Mollura, D.J.: Holistic interstitial lung disease detection using deep convolutional neural networks: multi-label learning and unordered pooling. arXiv preprint arXiv:1701.05616 (2017)

  28. Karabulut, E.M., Ibrikci, T.: Emphysema discrimination from raw HRCT images by convolutional neural networks. In: Proceedings of the ELECO, pp. 705–708 (2015)

    Google Scholar 

  29. Pei, X: Emphysema classification using convolutional neural networks. In: Proceedings of the ICIRA, pp. 455–461 (2015)

    Chapter  Google Scholar 

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR, pp. 770–778 (2016)

    Google Scholar 

  31. Heaton, J.: Ian Goodfellow, Yoshua Bengio, and Aaron Courville: deep learning. In: Genetic Programming and Evolvable Machines, pp. 305–307 (2017)

    Article  Google Scholar 

  32. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Represents, pp. 1–13 (2015)

    Google Scholar 

  33. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  34. Crapo, R.O. et al.: American thoracic society. Standardization of spirometry 1994 update. Am. J. Respir. Crit. Care Med. 152, 1107–1136 (1995)

    Google Scholar 

  35. Sverzellati, N., Cademartiri, F., Bravi, F., Martini, C., Gira, F.A., Maffei, E., Rossi, C.: Relationship and prognostic value of modified coronary artery calcium score, FEV1, and emphysema in lung cancer screening population: the MILD trial. Radiology 262, 460–467 (2012)

    Article  Google Scholar 

  36. Ceresa, M., Bastarrika, G., de Torres, J.P., Montuenga, L.M., Zulueta, J.J., Ortiz-de-Solorzano, C., Muñoz-Barrutia, A.: Robust, standardized quantification of pulmonary emphysema in low dose CT exams. Acad. Radiol. 18, 1382–1390 (2011)

    Article  Google Scholar 

  37. Hame, Y.T., Angelini, E.D., Hoffman, E.A., Barr, R.G., Laine, A.F.: Adaptive quantification and longitudinal analysis of pulmonary emphysema with a hidden markov measure field model. IEEE Trans. Med. Imaging 33, 1527–1540 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Zhejiang Lab Program under the Grant No.2018DG0ZX01, in part by the Key Science and Technology Innovation Support Program of Hangzhou under the Grant No.20172011A038, and in part by the Grant-in Aid for Scientific Research from the Japanese Ministry for Education, Science, Culture and Sports (MEXT) under the Grant No.18H03267 and No.17H00754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanfen Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, L. et al. (2020). Multi-scale Deep Convolutional Neural Networks for Emphysema Classification and Quantification. In: Chen, YW., Jain, L. (eds) Deep Learning in Healthcare. Intelligent Systems Reference Library, vol 171. Springer, Cham. https://doi.org/10.1007/978-3-030-32606-7_9

Download citation

Publish with us

Policies and ethics