Advertisement

Identifying Influential Users by Improving LeaderRank

  • Yong Yao
  • Cong JiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1075)

Abstract

In large-scale social network, influential users play important roles in public opinion analysis and information promotion. So, identifying influential users attract increasing attention in social network studies, and researchers have been trying to find a better algorithm to identify influential users. PageRank is useful for searching information in World Wide Web, but it has less effectiveness in social networks. LeaderRank is improved by PageRank and it has better ranking effectiveness than PageRank. But LeaderRank doesn’t consider the impact of the various personal attributes of the users. Therefore, this thesis proposes a new algorithm, the ANiceRank, which combines with the users’ multiple properties. To test the effectiveness of our algorithms, we introduce SIR model, which is widely used in virus transmission and information dissemination in social networks. The results show that the accuracy of the improved algorithm has been effectively improved and it can be used to identify influential users in social networks.

Keywords

Social network Influential users LeaderRank 

References

  1. 1.
    Lü, L., Chen, D.B., Zhou, T.: The small world yields the most effective information spreading. New J. Phys. 13(12), 123005 (2011).  https://doi.org/10.1088/1367-2630/13/12/123005CrossRefGoogle Scholar
  2. 2.
    Doer, B., Fouz, M., Friedrich, T.: Why rumors spread so quickly in social networks. Commun. ACM 55, 70 (2012).  https://doi.org/10.1145/2184319.2184338CrossRefGoogle Scholar
  3. 3.
    Lü, L., Zhang, Y.C., Yeung, C.H., et al.: Leaders in social networks, the delicious case. PLoS ONE 6, e21202 (2011).  https://doi.org/10.1371/journal.pone.0021202CrossRefGoogle Scholar
  4. 4.
    Page, L., Brin, S., Motwani, R., et al.: The PageRank citation ranking: bring order to the web. Technical report SIDL WP 1999 0120CA, Stanford Info Lab (1998)Google Scholar
  5. 5.
    Aral, S., Walker, D.: Identifying influential and susceptible members of social networks. Science 337, 337–341 (2012).  https://doi.org/10.1126/science.1215842MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bai, W.J., Zhou, T., Wang, B.H.: Immunization of susceptible- infected model on scale-free networks. Phys. A: Stat. Mech. Its Appl. 384, 656–662 (2007).  https://doi.org/10.1016/j.physa.2007.04.107CrossRefGoogle Scholar
  7. 7.
    Hébert-Dufresne, L., Allard, A., Young, J.G., et al.: Global efficiency of local immunization on complex networks. Sci. Rep. 3, 2171 (2013).  https://doi.org/10.1038/srep02171CrossRefGoogle Scholar
  8. 8.
    Huang, X., Vodenska, I., Wang, F., et al.: Identifying influential directors in the United States corporate governance network. Phys. Rev. E 84 (2011).  https://doi.org/10.1103/physreve.84.046101
  9. 9.
    Zhou, Y.B., Lü, L., Li, M.: Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity. New J. Phys. 14, 0330333 (2012).  https://doi.org/10.1088/1367-2630/14/3/033033CrossRefGoogle Scholar
  10. 10.
    Kitsak, M., Gallos, L.K., Havlin, S., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6, 888–893 (2010).  https://doi.org/10.1038/nphys1746CrossRefGoogle Scholar
  11. 11.
    Freeman, L.C.: Centrality in Social Networks’ Conceptual Clarification. Soc. Netw. 1, 215–239 (1979).  https://doi.org/10.1016/0378-8733(78)90021-7CrossRefGoogle Scholar
  12. 12.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953).  https://doi.org/10.1007/bf02289026CrossRefzbMATHGoogle Scholar
  13. 13.
    Dolev, S., Elovici, Y., Puzis, R.: Routing betweenness centrality. J. ACM 574, 1–27 (2010).  https://doi.org/10.1145/1734213.1734219MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Netw. 29, 555–564 (2007).  https://doi.org/10.1016/j.socnet.2007.04.002CrossRefGoogle Scholar
  15. 15.
    Estrada, E., Rodriguez-Velazquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E 715 (2005)Google Scholar
  16. 16.
    Kim, H.J., Kim, J.M.: Cyclic topology in complex networks. Phys. Rev. E 72 (2005).  https://doi.org/10.1103/physreve.72.036109
  17. 17.
    Comin, C.H, Luciano, D.F.C.: Identifying the starting point of a spreading process in complex networks. Phys. Rev. E 84 (2011).  https://doi.org/10.1103/physreve.84.056105
  18. 18.
    Song, K., Wang, D., Feng, S., et al.: Detecting opinion leader dynamically in Chinese news comments. Web-Age Inf. Manag. 197–209 (2012).  https://doi.org/10.1007/978-3-642-28635-3_19CrossRefGoogle Scholar
  19. 19.
    Tang, L., Liu, H.: Community detection and mining in social media. Synth. Lect. Data Min. Knowl. Discov. 2, 1–137 (2010).  https://doi.org/10.2200/s00298ed1v01y201009dmk003CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyXidian UniversityShaanxiChina

Personalised recommendations