Skip to main content

Time-Invariant Cryptographic Key Generation from Cardiac Signals

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2019 (FTC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1070))

Included in the following conference series:

Abstract

Cardiac signal (also known as ECG signal) attracted researchers for using it in generating cryptographic keys due to its availability and its intrinsic nature of every individual. However, the intra-individual variance of ECG signal decreases the possibility of getting a time-invariant key for each individual and increases decryption errors in case of using it in symmetric cryptography. In this paper, we propose a time-invariant cryptographic key generation approach (TICK) that uses a novel method for reducing the intra-individual variance in the real-valued ECG features of multiple sessions. Also, it uses a quantization method for converting the improved ECG features to binary sequences with high randomness. We have tested the approach on a multi-session database. Experimental results show its viability to improve the reliability of keys up to 96.80% using across-sessions data and up to 98.69% using within-session data. We verified the randomness using five of U.S. National Institute of Standards and Technology statistical tests and the generated keys passed all tests. Also, we verified the randomness using min-entropy, and the generated keys offer entropy of ~1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoekema, R., Uijen, G.J., Van Oosterom, A.: Geometrical aspects of the interindividual variability of multilead ECG recordings. IEEE Trans. Biomed. Eng. 48(5), 551–559 (2001)

    Article  Google Scholar 

  2. Islam, M.S., Alajlan, N.: Biometric template extraction from a heartbeat signal captured from fingers. Multimedia Tools Appl. 76(10), 12709–12733 (2017)

    Article  Google Scholar 

  3. Karimian, N., Guo, Z., Tehranipoor, M., Forte, D.: Highly reliable key generation from electrocardiogram (ECG). IEEE Trans. Biomed. Eng. 64(6), 1400–1411 (2017)

    Article  Google Scholar 

  4. Coutinho, D.P., Silva, H., Gamboa, H., Fred, A., Figueiredo, M.: Novel fiducial and non-fiducial approaches to electrocardiogram-based biometric systems. IET Biometrics 2(2), 64–75 (2013)

    Article  Google Scholar 

  5. Islam, M.S., Alajlan, N., Bazi, Y., Hichri, H.S.: HBS: a novel biometric feature based on heartbeat morphology. IEEE Trans. Inf. Technol. Biomed. 16(3), 445–453 (2012)

    Article  Google Scholar 

  6. Chan, A.D., Hamdy, M.M., Badre, A., Badee, V.: Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 57(2), 248–253 (2008)

    Article  Google Scholar 

  7. Zhang, G.H., Poon, C.C., Zhang, Y.T.: Analysis of using interpulse intervals to generate 128-Bit biometric random binary sequences for securing wireless body sensor networks. IEEE Trans. Inf Technol. Biomed. 16(1), 176–182 (2012)

    Article  Google Scholar 

  8. Bao, S.D., Poon, C.C., Zhang, Y.T., Shen, L.F.: Using the timing information of heartbeats as an entity identifier to secure body sensor network. IEEE Trans. Inf Technol. Biomed. 12(6), 772–779 (2008)

    Article  Google Scholar 

  9. Moosavi, S.R., Nigussie, E., Virtanen, S., Isoaho, J.: Cryptographic key generation using ECG signal. In: 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1024–1031. IEEE, Las Vegas (2017)

    Google Scholar 

  10. Moosavi, S.R., Nigussie, E., Levorato, M., Virtanen, S., Isoaho, J.: Low-latency approach for secure ECG feature based cryptographic key generation. IEEE Access 6, 428–442 (2018)

    Article  Google Scholar 

  11. Hamad, N., Rahman, M., Islam, S.: Novel remote authentication protocol using heart-signals with chaos cryptography. In: International Conference on Informatics, Health & Technology (ICIHT), pp. 1–7. IEEE, Riyadh (2017)

    Google Scholar 

  12. González-Manzano, L., de Fuentes, J.M., Peris-Lopez, P., Camara, C.: Encryption by heart (EbH)—using ECG for time-invariant symmetric key generation. Future Gener. Comput. Syst. 77, 136–148 (2017)

    Article  Google Scholar 

  13. Zeadally, S., Isaac, J.T., Baig, Z.: Security attacks and solutions in electronic health (E-health) systems. J. Med. Syst. 40(12), 263 (2016)

    Article  Google Scholar 

  14. Wang, B., Wang, L., Lin, S.J., Wu, D., Huang, B.Y., Zhang, Y.T., Yin, Q., Chen, W.: A body sensor networks development platform for pervasive healthcare. In: 3rd International Conference on Bioinformatics and Biomedical Engineering, pp. 1–4. IEEE, Beijing (2009)

    Google Scholar 

  15. Xu, F., Qin, Z., Tan, C.C., Wang, B., Li, Q.: IMDGuard: securing implantable medical devices with the external wearable guardian. In: Proceedings of IEEE INFOCOM, pp. 1862–1870. IEEE, Shanghai (2011)

    Google Scholar 

  16. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22, pp. 1–153, 15 May 2001. http://www.nist.gov

  17. Islam, M.S., Alajlan, N.: Model-based alignment of heartbeat morphology for enhancing human recognition capability. Comput. J. 58(10), 2622–2635 (2015)

    Article  Google Scholar 

  18. Islam, S., Ammour, N., Alajlan, N., Abdullah-Al-Wadud, M.: Selection of heart-biometric templates for fusion. IEEE Access 5, 1753–1761 (2017)

    Article  Google Scholar 

  19. Barker, E., Kelsey, J.: Recommendation for the entropy sources used for random bit generation. Draft NIST Special Publication, 800-900 (2012). http://www.nist.gov

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Alharbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alharbi, S., Islam, M.S., Alahmadi, S. (2020). Time-Invariant Cryptographic Key Generation from Cardiac Signals. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2019. FTC 2019. Advances in Intelligent Systems and Computing, vol 1070. Springer, Cham. https://doi.org/10.1007/978-3-030-32523-7_23

Download citation

Publish with us

Policies and ethics