Advertisement

PROBE: Preparing for Roads in Advance of Barriers and Errors

  • Mohammed AlharbiEmail author
  • Hassan A. Karimi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1069)

Abstract

In this paper, we analyze the performance of sensors to find optimal navigation solutions for fully autonomous vehicles (AVs). We consider sensory and environmental uncertainties that may prevent AVs from achieving optimal navigation accuracy, which could in turn threaten the safety of road users. As the fusion of all sensors might not be able to resolve these problems, we propose a new approach called PROBE (preparing for roads in advance of barriers and errors) that consists of five algorithms: error analyzer, path finder, challenge detector, challenge analyzer, and path marker. The objective of these algorithms is to provide the highest level of navigation accuracy obtainable in navigation-challenging conditions. The final outcome of these algorithms is visualization of challenging conditions on a selected route. We experimented with PROBE using routes in different countries and the results show that PROBE performs well in detecting, analyzing, and marking navigation challenges in advance. PROBE’s outcome can be used to decide on the appropriate sensors in advance of challenging conditions.

Keywords

Autonomous vehicles Location estimation Navigation 

References

  1. 1.
    Gao, P., Kaas, H.-W., Mohr, D., Wee, D.: Automotive revolution-perspective towards 2030. How the convergence of disruptive technology-driven trends could transform the auto industry. Technical report, Advanced Industries, McKinsey & Company (2016)Google Scholar
  2. 2.
    National Highway Traffic Safety Administration. Federal automated vehicles policy: accelerating the next revolution in roadway safety. US Department of Transportation (2016). https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/federal_automated_vehicles_policy.pdf
  3. 3.
    Fraedrich, E., Beiker, S., Lenz, B.: Transition pathways to fully automated driving and its implications for the sociotechnical system of automobility. Eur. J. Futures Res. 3(1), 11 (2015).  https://doi.org/10.1007/s40309-015-0067-8. ISSN: 2195-2248
  4. 4.
    Silberg, G., Wallace, R., Matuszak, G., Plessers, J., Brower, C., Subramanian, D.: Self-driving cars: the next revolution. White paper, KPMG LLP & Center of Automotive Research, p. 36 (2012)Google Scholar
  5. 5.
    Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 77, 167-181 (2015).  https://doi.org/10.1016/.tra.2015.04.003. http://www.sciencedirect.com/science/article/pii/S0965856415000804, ISSN: 0965-8564
  6. 6.
    Anderson, J.M., Nidhi, K., Stanley, K.D., Sorensen, P., Samaras, C., Oluwatola, O.A.: Autonomous Vehicle Technology: A Guide for Policymakers. Rand Corporation (2014). ISBN: 0833084372Google Scholar
  7. 7.
    Häne, C., et al.: 3D visual perception for self-driving cars using a multi-camera system: calibration, mapping, localization, and obstacle detection. Image Vis. Comput. 68, 14–27 (2017). ISSN: 0262-8856CrossRefGoogle Scholar
  8. 8.
    Li, J., et al.: Real-time self-driving car navigation and obstacle avoidance using mobile 3D laser scanner and GNSS. Multimedia Tools Appl. 76(21), 23017–23039 (2017). ISSN: 1380-7501CrossRefGoogle Scholar
  9. 9.
    Sukkarieh, S., Nebot, E.M., Durrant-Whyte, H.F.: A high integrity IMU/GPS navigation loop for autonomous land vehicle applications. IEEE Trans. Robot. Autom. 15(3), 572–578 (1999). ISSN: 1042-296XCrossRefGoogle Scholar
  10. 10.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning in road networks. Transp. Sci. 51(2), 566–591 (2015)CrossRefGoogle Scholar
  11. 11.
    Kim, H., Liu, B., Goh, C.Y., Lee, S., Myung, H.: Robust vehicle localization using entropy-weighted particle filter-based data fusion of vertical and road intensity information for a large scale urban area. IEEE Robot. Autom. Lett. 2(3), 1518–1524 (2017). ISSN: 2377-3766CrossRefGoogle Scholar
  12. 12.
    Ort, T., Paull, L., Rus, D.: Autonomous vehicle navigation in rural environments without detailed prior maps. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2040–2047. IEEE (2018)Google Scholar
  13. 13.
    Paton, M., Pomerleau, F., MacTavish, K., Ostafew, C.J., Barfoot, T.D.: Expanding the limits of vision-based localization for long-term route-following autonomy. J. Field Robot. 34(1), 98–122 (2017). ISSN: 1556-4959CrossRefGoogle Scholar
  14. 14.
    Zhang, J., Singh, S.: LOAM: lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, p. 9 (2014)Google Scholar
  15. 15.
    Díaz Alonso, J., Ros Vidal, E., Rotter, A., Muhlenberg, M.: Lane-change decision aid system based on motion-driven vehicle tracking. IEEE Trans. Veh. Technol. 57(5), 2736–2746, 2008.  https://doi.org/10.1109/TVT.2008.917220. http://ieeexplore.ieee.org/document/4439300/, ISSN: 0018-9545CrossRefGoogle Scholar
  16. 16.
    Habenicht, S., Winner, H., Bone, S., Sasse, F., Korzenietz, P.: A maneuver-based lane change assistance system. In: Intelligent Vehicles Symposium (IV), 2011, pp. 375–380. IEEE (2011). ISBN: 1457708914Google Scholar
  17. 17.
    Hou, Y., Edara, P., Sun, C.: Modeling mandatory lane changing using bayes classifier and decision trees. IEEE Trans. Intell. Transp. Syst. 15(2), 647–655 (2014). ISSN: 1524-9050CrossRefGoogle Scholar
  18. 18.
    Hou, Y., Edara, P., Sun, C.: Situation assessment and decision making for lane change assistance using ensemble learning methods. Expert Syst. Appl. 42(8), 3875–3882 (2015). ISSN: 0957-4174CrossRefGoogle Scholar
  19. 19.
    Zheng, J., Suzuki, K., Fujita, M.: Predicting driver’s lane-changing decisions using a neural network model. Simul. Model. Pract. Theory 42, 73–83 (2014).  https://doi.org/10.1016/j.simpat.2013.12.007. ISSN: 1569190XCrossRefGoogle Scholar
  20. 20.
    Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: Learning affordance for direct perception in autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2722–2730. IEEE (2015).  https://doi.org/10.1109/ICCV.2015.312. ISBN: 9781467383912
  21. 21.
    Hatipoglu, C., Ozguner, U., Redmill, K.A.: Automated lane change controller design. IEEE Trans. Intell. Transp. Syst. 4(1), 13–22 (2003). ISSN: 1524-9050CrossRefGoogle Scholar
  22. 22.
    Ulbrich, S., Maurer, M.: Towards tactical lane change behavior planning for automated vehicles. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), pp. 989–995. IEEE (2015). ISBN: 1467365963Google Scholar
  23. 23.
    Nie, J., Zhang, J., Ding, W., Wan, X., Chen, X., Ran, B.: Decentralized cooperative lane-changing decision-making for connected autonomous vehicles. IEEE Access 4, 9413–9420 (2016).  https://doi.org/10.1109/ACCESS.2017.2649567. ISSN: 21693536CrossRefGoogle Scholar
  24. 24.
    Wang, M., Hoogendoorn, S.P., Daamen, W., van Arem, B., Happee, R.: Game theoretic approach for predictive lane-changing and car-following control. Transp. Res. Part C Emerg. Technol. 58, 73–92 (2015).  https://doi.org/10.1016/j.trc.2015.07.009, http://www.sciencedirect.com/science/article/pii/S0968090X15002491, ISSN 0968-090XCrossRefGoogle Scholar
  25. 25.
    Bhattacharya, P., Gavrilova, M.L.: Voronoi diagram in optimal path planning. In: 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007) (ISVD), pp. 38–47 (2007).  https://doi.org/10.1109/ISVD.2007.43. ISBN: 0769528694
  26. 26.
    Canny, J.: A new algebraic method for robot motion planning and real geometry. In: 28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pp. 39–48. IEEE (1987).  https://doi.org/10.1109/SFCS.1987.1. ISBN: 0-8186-0807-2
  27. 27.
    Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of a*. J. ACM, 32(3), 505–536 (1985).  https://doi.org/10.1145/3828.3830. http://doi.acm.org/10.1145/3828.3830, ISSN: 0004-5411CrossRefGoogle Scholar
  28. 28.
    Gelperin, David: On the optimality of a*. Artif. Intell. 8(1), 69–76 (1977).  https://doi.org/10.1016/0004-3702(77)90005-4. ISSN: 0004-3702MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Technical report, Iowa State University (1998)Google Scholar
  30. 30.
    Petricek, T., Svoboda, T.: Point cloud registration from local feature correspondences-evaluation on challenging datasets. PLoS ONE 12(11), e0187943 (2017).  https://doi.org/10.1371/journal.pone.0187943. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685596/, ISSN: 1932-6203CrossRefGoogle Scholar
  31. 31.
    Šeda, M.: Roadmap methods vs. cell decomposition in robot motion planning. In: Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, ISPRA 2007, pp. 127–132. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2007). http://dl.acm.org/citation.cfm?id=1355681.1355703. ISBN: 978-960-8457-59-1
  32. 32.
    Vadakkepat, P., Tan, K.C., Ming-Liang, W.: Evolutionary artificial potential fields and their application in real time robot path planning. In: Proceedings of the 2000 Congress on Evolutionary Computation, CEC00 (Cat. No.00TH8512), vol. 1, pp. 256–263. IEEE, July 2000.  https://doi.org/10.1109/CEC.2000.870304
  33. 33.
    Yang, S.X., Luo, C.: A neural network approach to complete coverage path planning. IEEE Trans. Syst. Man Cybern. 34(1), 718–724 (2004).  https://doi.org/10.1109/TSMCB.2003.811769. ISSN 1083-4419CrossRefGoogle Scholar
  34. 34.
    Gim, S., Adouane, L., Lee, S., Dérutin, J.P.: Clothoids composition method for smooth path generation of car-like vehicle navigation. J. Intell. Robot. Syst. Theory Appl. 88(1), 129–146 (2017).  https://doi.org/10.1007/s10846-017-0531-8. ISSN: 15730409CrossRefGoogle Scholar
  35. 35.
    Piazzi, A., Bianco, C.G.L., Bertozzi, M., Fascioli, A., Broggi, A.: Quintic \(g_2\)-splines for the iterative steering of vision-based autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 3(1), 27–36 (2002).  https://doi.org/10.1109/6979.994793. ISSN: 15249050CrossRefGoogle Scholar
  36. 36.
    Rastelli, J.P., Lattarulo, R., Nashashibi, F.: Dynamic trajectory generation using continuous-curvature algorithms for door to door assistance vehicles. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 510–515. IEEE, June 2014.  https://doi.org/10.1109/IVS.2014.6856526
  37. 37.
    Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pacific J. Math. 145(2), 367–393 (1990). http://projecteuclid.org/euclid.pjm/1102645450, ISSN: 0030-8730
  38. 38.
    Rosmann, C., Feiten, W., Wosch, T., Hoffmann, F., Bertram, T.: Efficient trajectory optimization using a sparse model. In: 2013 European Conference on Mobile Robots, pp. 138–143. IEEE (2013).  https://doi.org/10.1109/ECMR.2013.6698833. ISBN: 9781479902637
  39. 39.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960).  https://doi.org/10.1115/1.3662552. ISSN: 00219223MathSciNetCrossRefGoogle Scholar
  40. 40.
    Smith, G.L., Schmidt, S.F., McGee, L.A.: Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle. National Aeronautics and Space Administration (1962)Google Scholar
  41. 41.
    Janai, J., Güney, F., Behl, A., Geiger, A.: Computer vision for autonomous vehicles: problems, datasets and state-of-the-art. CoRR, abs/1704.05519: 67 (2017). http://arxiv.org/abs/1704.05519
  42. 42.
    Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017). ISSN: 1552-3098CrossRefGoogle Scholar
  43. 43.
    IEEE Computer Society: IEEE standard for distributed interactive simulation - application protocols. In: IEEE Std 1278.1-1995, p. i (1996).  https://doi.org/10.1109/IEEESTD.1996.80831
  44. 44.
    Schubert, R., Richter, E., Wanielik, G.: Comparison and evaluation of advanced motion models for vehicle tracking. In: 2008 11th International Conference on Information Fusion, pp. 1–6. IEEE (2008). ISBN: 3800730928Google Scholar
  45. 45.
    Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573–580. IEEE (2012). ISBN: 1467317365Google Scholar
  46. 46.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380 (1991). ISSN: 0162-8828CrossRefGoogle Scholar
  47. 47.
    Luxen, D., Vetter, C.: Real-time routing with openstreetmap data. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2011, pp. 513–516, ACM, New York (2011).  https://doi.org/10.1145/2093973.2094062, http://doi.acm.org/10.1145/2093973.2094062, ISBN: 978-1-4503-1031-4
  48. 48.
    OpenStreetMap contributors. Planet dump (2017). https://planet.osm.org, https://www.openstreetmap.org
  49. 49.
    Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32, 1231–1237 (2013).  https://doi.org/10.1177/0278364913491297. ISSN: 02783649CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Geoinformatics Laboratory, School of Computing and InformationUniversity of PittsburghPittsburghUSA
  2. 2.Taibah UniversityMedinaSaudi Arabia

Personalised recommendations