Skip to main content

Diagnosis of Celiac Disease and Environmental Enteropathy on Biopsy Images Using Color Balancing on Convolutional Neural Networks

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2019 (FTC 2019)

Abstract

Celiac Disease (CD) and Environmental Enteropathy (EE) are common causes of malnutrition and adversely impact normal childhood development. CD is an autoimmune disorder that is prevalent worldwide and is caused by an increased sensitivity to gluten. Gluten exposure destructs the small intestinal epithelial barrier, resulting in nutrient mal-absorption and childhood under-nutrition. EE also results in barrier dysfunction but is thought to be caused by an increased vulnerability to infections. EE has been implicated as the predominant cause of under-nutrition, oral vaccine failure, and impaired cognitive development in low-and-middle-income countries. Both conditions require a tissue biopsy for diagnosis, and a major challenge of interpreting clinical biopsy images to differentiate between these gastrointestinal diseases is striking histopathologic overlap between them. In the current study, we propose a convolutional neural network (CNN) to classify duodenal biopsy images from subjects with CD, EE, and healthy controls. We evaluated the performance of our proposed model using a large cohort containing 1000 biopsy images. Our evaluations show that the proposed model achieves an area under ROC of 0.99, 1.00, and 0.97 for CD, EE, and healthy controls, respectively. These results demonstrate the discriminative power of the proposed model in duodenal biopsies classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Who. children: reducing mortality. fact sheet 2017. http://www.who.int/mediacentre/factsheets/fs178/en/. Accessed 30 Jan 2019

  2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  3. Al Boni, M., Syed, S., Ali, A., Moore, S.R., Brown, D.E.: Duodenal biopsies classification and understanding using convolutional neural networks. American Medical Informatics Association (2019)

    Google Scholar 

  4. Bejnordi, B.E., Veta, M., Van Diest, P.J., Van Ginneken, B., Karssemeijer, N., Litjens, G., Van Der Laak, J.A., Hermsen, M., Manson, Q.F., Balkenhol, M., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  5. Bianco, S., Cusano, C., Napoletano, P., Schettini, R.: Improving CNN-based texture classification by color balancing. J. Imaging 3(3), 33 (2017)

    Article  Google Scholar 

  6. Bianco, S., Schettini, R.: Error-tolerant color rendering for digital cameras. J. Math. Imaging Vis. 50(3), 235–245 (2014)

    Article  Google Scholar 

  7. Chen, K., Seuret, M., Liwicki, M., Hennebert, J., Ingold, R.: Page segmentation of historical document images with convolutional autoencoders. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1011–1015. IEEE (2015)

    Google Scholar 

  8. Chollet, F., et al.: Keras: deep learning library for theano and tensorflow (2015). https://keras.io/

  9. Geng, J., Fan, J., Wang, H., Ma, X., Li, B., Chen, F.: High-resolution sar image classification via deep convolutional autoencoders. IEEE Geosci. Remote Sens. Lett. 12(11), 2351–2355 (2015)

    Article  Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  11. Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  12. Hegde, R.B., Prasad, K., Hebbar, H., Singh, B.M.K.: Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybern. Biomed. Eng. (2019)

    Google Scholar 

  13. Heidarysafa, M., Kowsari, K., Brown, D.E., Jafari Meimandi, K., Barnes, L.E.: An improvement of data classification using random multimodel deep learning (RMDL) 8(4), 298–310 (2018). https://doi.org/10.18178/ijmlc.2018.8.4.703

  14. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016)

    Google Scholar 

  15. Husby, S., et al.: European society for pediatric gastroenterology, hepatology, and nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 54(1), 136–160 (2012)

    Article  Google Scholar 

  16. Ker, J., Wang, L., Rao, J., Lim, T.: Deep learning applications in medical image analysis. IEEE Access 6, 9375–9389 (2018)

    Article  Google Scholar 

  17. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Kowsari, K., Brown, D.E., Heidarysafa, M., Meimandi, K.J., Gerber, M.S., Barnes, L.E.: HDLTex: hierarchical deep learning for text classification. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 364–371. IEEE (2017)

    Google Scholar 

  19. Kowsari, K., Heidarysafa, M., Brown, D.E., Meimandi, K.J., Barnes, L.E.: RMDL: random multimodel deep learning for classification. In: Proceedings of the 2nd International Conference on Information System and Data Mining, pp. 19–28. ACM (2018)

    Google Scholar 

  20. Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., Brown, D.: Text classification algorithms: a survey. Information 10(4) (2019). https://doi.org/10.3390/info10040150

    Article  Google Scholar 

  21. Lever, J., Krzywinski, M., Altman, N.: Points of significance: classification evaluation (2016)

    Google Scholar 

  22. Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 844–848. IEEE (2014)

    Google Scholar 

  23. Liang, H., Sun, X., Sun, Y., Gao, Y.: Text feature extraction based on deep learning: a review. EURASIP J. Wirel. Commun. Networking 2017(1), 211 (2017)

    Article  Google Scholar 

  24. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  25. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: International Conference on Artificial Neural Networks, pp. 52–59. Springer (2011)

    Google Scholar 

  26. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  27. Nawaz, W., Ahmed, S., Tahir, A., Khan, H.A.: Classification of breast cancer histology images using ALEXNET. In: International Conference Image Analysis and Recognition, pp. 869–876. Springer (2018)

    Google Scholar 

  28. Naylor, C., Lu, M., Haque, R., Mondal, D., Buonomo, E., Nayak, U., Mychaleckyj, J.C., Kirkpatrick, B., Colgate, R., Carmolli, M., et al.: Environmental enteropathy, oral vaccine failure and growth faltering in infants in bangladesh. EBioMedicine 2(11), 1759–1766 (2015)

    Article  Google Scholar 

  29. Nobles, A.L., Glenn, J.J., Kowsari, K., Teachman, B.A., Barnes, L.E.: Identification of imminent suicide risk among young adults using text messages. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 413. ACM (2018)

    Google Scholar 

  30. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science (1985)

    Google Scholar 

  31. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Artificial Neural Networks-ICANN 2010, pp. 92–101 (2010)

    Chapter  Google Scholar 

  32. Syed, S., Ali, A., Duggan, C.: Environmental enteric dysfunction in children: a review. J. Pediatr. Gastroenterol. Nutr. 63(1), 6 (2016)

    Article  Google Scholar 

  33. Wang, W., Huang, Y., Wang, Y., Wang, L.: Generalized autoencoder: a neural network framework for dimensionality reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 490–497 (2014)

    Google Scholar 

  34. Yang, Y.: An evaluation of statistical approaches to text categorization. Inf. Retrieval 1(1–2), 69–90 (1999)

    Article  Google Scholar 

  35. Zhai, S., Cheng, Y., Zhang, Z.M., Lu, W.: Doubly convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1082–1090 (2016)

    Google Scholar 

  36. Zhang, J., Kowsari, K., Harrison, J.H., Lobo, J.M., Barnes, L.E.: Patient2Vec: a personalized interpretable deep representation of the longitudinal electronic health record. IEEE Access 6, 65333–65346 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by University of Virginia, Engineering in Medicine SEED Grant \( (SS~ \& ~DEB)\), the University of Virginia Translational Health Research Institute of Virginia (THRIV) Mentored Career Development Award (SS), and the Bill and Melinda Gates Foundation  (AA,  OPP1138727; SRM, OPP1144149; PK,  OPP1066118)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sana Syed or Donald E. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kowsari, K. et al. (2020). Diagnosis of Celiac Disease and Environmental Enteropathy on Biopsy Images Using Color Balancing on Convolutional Neural Networks. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2019. FTC 2019. Advances in Intelligent Systems and Computing, vol 1069. Springer, Cham. https://doi.org/10.1007/978-3-030-32520-6_55

Download citation

Publish with us

Policies and ethics