Simulation-Based Analysis of Equalization Algorithms on Active Balancing Battery Topologies for Electric Vehicles

  • Asadullah Khalid
  • Alexander Hernandez
  • Aditya Sundararajan
  • Arif I. SarwatEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1069)


Determination of the cell electro-chemistry, topology, and application requirements are crucial to developing a battery management system for charge equalization in a series-connected stack of Lithium-ion (Li-ion) cells. The existing literature on topology categorization does not provide battery and battery model selection methodology for battery management system (BMS) development. To bridge this gap in the literature, this paper provides a unique simulation based analysis on the major steps required to build a BMS that include analysis of a variety of existing Lithium-ion cell electro-chemistries, equivalent models, equalization topologies and circuits. Equalization circuits and their variants are categorized based on components, topology, balancing time and configurations. Cell balancing simulations are then performed on a centralized and a distributed topology using an appropriate equivalent model identified by the analysis. In addition, the simulation also uses a unique cell equalization algorithm proposed in this paper. The results validate voltage and state of charge (SOC) equalization performance in terms of balancing time and energy efficiency. These factors play a crucial role in maintaining battery life and preventing thermal runaways in electric vehicles (EV) or energy storage systems (ESS).


Equalization algorithm Parameter identification Electro-chemistry Balancing time Energy storage element SOC convergence 



The material published is a result of the research supported by the National Science Foundation under the Award number CNS-1553494.


  1. 1.
    Battery cell charging system having voltage threshold and bleeder current generating circuits, March 2002Google Scholar
  2. 2.
  3. 3.
    Affanni, A., Bellini, A., Franceschini, G., Guglielmi, P., Tassoni, C.: Battery choice and management for new-generation electric vehicles. IEEE Trans. Industr. Electron. 52(5), 1343–1349 (2005)CrossRefGoogle Scholar
  4. 4.
    Andre, D., Meiler, M., Steiner, K., Walz, H., Soczka-Guth, T., Sauer, D.U.: Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. ii: Modelling. J. Power Sources 196(12), 5349–5356 (2011). Selected papers presented at the 12th Ulm Electro Chemical Talks (UECT): 2015 Technologies on Batteries and Fuel CellsGoogle Scholar
  5. 5.
    Brand, M., Gläser, S., Geder, J., Menacher, S., Obpacher, S., Jossen, A., Quinger, D.: Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology. In: 2013 World Electric Vehicle Symposium and Exhibition (EVS27), pp. 1–9, November 2013Google Scholar
  6. 6.
    Brando, G., Dannier, A., Spina, I., Piegari, L.: Comparison of accuracy of different LiFePO4 battery circuital models. In: 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 1092–1097, June 2014Google Scholar
  7. 7.
    Bui, T.M., Kim, C.-H., Kim, K.-H., Rhee, S.B.: A modular cell balancer based on multi-winding transformer and switched-capacitor circuits for a series-connected battery string in electric vehicles. Appl. Sci. 8(8), 1278 (2018)CrossRefGoogle Scholar
  8. 8.
    Cacciato, M., Nobile, G., Scarcella, G., Scelba, G.: Real-time model-based estimation of SOC and SOH for energy storage systems. IEEE Trans. Power Electron. 32(1), 794–803 (2017)CrossRefGoogle Scholar
  9. 9.
    Caspar, M., Eiler, T., Hohmann, S.: Systematic comparison of active balancing: a model-based quantitative analysis. IEEE Trans. Veh. Technol. 67(2), 920–934 (2018)CrossRefGoogle Scholar
  10. 10.
    Chen, X., Shen, W., Vo, T.T., Cao, Z., Kapoor, A.: An overview of lithium-ion batteries for electric vehicles. In: 2012 10th International Power Energy Conference (IPEC), pp. 230–235, December 2012Google Scholar
  11. 11.
    Chiang, Y.-H., Sean, W.-Y., Ke, J.-C.: Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles. J. Power Sources 196(8), 3921–3932 (2011)CrossRefGoogle Scholar
  12. 12.
    Daowd, M., Antoine, M., Omar, N., Lataire, P., Van Den Bossche, P., Van Mierlo, J.: Battery management system—balancing modularization based on a single switched capacitor and bi-directional DC/DC converter with the auxiliary battery. Energies 7(5), 2897–2937 (2014)CrossRefGoogle Scholar
  13. 13.
    Daowd, M., Antoine, M., Omar, N., van den Bossche, P., van Mierlo, J.: Single switched capacitor battery balancing system enhancements. Energies 6(4), 2149–2174 (2013)CrossRefGoogle Scholar
  14. 14.
    Daowd, M.A.A.H., Omar, N., Verbrugge, B., Van Den Bossche, P., Van Mierlo, J.: Battery Models Parameter Estimation based on Matlab/Simulink, November 2010Google Scholar
  15. 15.
    Du, J., Wang, Y., Tripathi, A., Lam, J.S.L.: Li-ion battery cell equalization by modules with chain structure switched capacitors. In: 2016 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), pp. 1–6, October 2016Google Scholar
  16. 16.
    Dubarry, M., Vuillaume, N., Liaw, B.Y.: From single cell model to battery pack simulation for Li-ion batteries. J. Power Sources 186(2), 500–507 (2009)CrossRefGoogle Scholar
  17. 17.
    Falconi, A.: Electrochemical Li-ion battery modeling for electric vehicles. Theses, Communaute Universite Grenoble ALPES, October 2017Google Scholar
  18. 18.
    Mousavi G., S.M., Nikdel, M.: Various battery models for various simulation studies and applications. Renew. Sustain. Energy Rev. 32, 477–485 (2014)Google Scholar
  19. 19.
    Gallardo-Lozano, J., Romero-Cadaval, E., Milanes-Montero, M.I., Guerrero-Martinez, M.A.: Battery equalization active methods. J. Power Sources 246, 934–949 (2014)CrossRefGoogle Scholar
  20. 20.
    Gonzalez-Longatt, F.: Circuit based battery models: a review. In: Congreso Iberoamericano de estudiantes De Ingenieria Electrica, pp. 1–5 (2007)Google Scholar
  21. 21.
    Guo, Y., Lu, R., Wu, G., Zhu, C.: A high efficiency isolated bidirectional equalizer for lithium-ion battery string. In: 2012 IEEE Vehicle Power and Propulsion Conference, pp. 962–966, October 2012Google Scholar
  22. 22.
    Hannan, M.A., Hoque, M.M., Ker, P.J., Begum, R.A., Mohamed, A.: Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: modeling and applications. Energies 10(9), 1390 (2017)CrossRefGoogle Scholar
  23. 23.
    He, H., Xiong, R., Fan, J.: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 4(4), 582–598 (2011)CrossRefGoogle Scholar
  24. 24.
    Xiaosong, H., Li, S., Peng, H.: A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 198, 359–367 (2012)CrossRefGoogle Scholar
  25. 25.
    Hussein, A.A.: Experimental modeling and analysis of lithium-ion battery temperature dependence. In: 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1084–1088, March 2015Google Scholar
  26. 26.
    Hussein, A.A., Batarseh, I.: An overview of generic battery models. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–6, July 2011Google Scholar
  27. 27.
    Hymel, S.: Measuring internal resistance of batteries, May 2013Google Scholar
  28. 28.
    Imtiaz, A.M., Khan, F.H.: “Time shared flyback converter” based regenerative cell balancing technique for series connected Li-ion battery strings. IEEE Trans. Power Electron. 28(12), 5960–5975 (2013)CrossRefGoogle Scholar
  29. 29.
    Texas Instruments. EMB1499Q bidirectional current DC-DC controller, September 2013Google Scholar
  30. 30.
    Islam, M., Omole, A., Islam, A., Domijan, A.: Dynamic capacity estimation for a typical grid-tied event programmable LI-FEPO4 battery. In: 2010 IEEE International Energy Conference, pp. 594–599, December 2010Google Scholar
  31. 31.
    Jeon, Y., Noh, H.K., Song, H.-K.: A lithium-ion battery using partially lithiated graphite anode and amphi-redox LiMn2O4 cathode. Sci. Rep. 7(1), 14879 (2017)CrossRefGoogle Scholar
  32. 32.
    Kam, K.C., Doeff, M.M.: Electrode materials for lithium ion batteries. Mater. Matters 7, 56–60 (2012)Google Scholar
  33. 33.
    Karthigeyan, V., Aswin, M., Priyanka, L., Sailesh, K.N.D., Palanisamy, K.: A comparative study of lithium ion (LFP) to lead acid (VRLA) battery for use in telecom power system. In: 2017 International Conference on Computation of Power, Energy Information and Communication (ICCPEIC), pp. 742–748, March 2017Google Scholar
  34. 34.
    Khalid, A., Sundararajan, A., Acharya, I., Sarwat, A.I.: Prediction of Li-ion battery state of charge using multilayer perceptron and long short-term memory models. In: 2019 IEEE Transportation Electrification Conference (ITEC) (2019, in press)Google Scholar
  35. 35.
    Khalid, A., Sundararajan, A., Hernandez, A., Sarwat, A.: Facts approach to address cybersecurity issues in electric vehicle battery systems. In: IEEE Technology and Engineering Management Conference (TEMSCON) (2019, in press)Google Scholar
  36. 36.
    Khalid, A., Sundararajan, A., Sarwat, A.I.: A multi-step predictive model to estimate Li-ion state of charge for higher c-rates. In: 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I CPS Europe) (2019, in press)Google Scholar
  37. 37.
    Khalid, A.: Electricity usage monitoring using face recognition technique. Int. J. Emerg. Technol. Adv. Eng. 2(10), 274–276 (2012)Google Scholar
  38. 38.
    Kim, C., Kim, M., Park, H., Moon, G.: A modularized two-stage charge equalizer with cell selection switches for series-connected lithium-ion battery string in an HEV. IEEE Trans. Power Electron. 27(8), 3764–3774 (2012)CrossRefGoogle Scholar
  39. 39.
    Kirchev, A.: Battery management and battery diagnostics. In: Moseley, P.T., Garche, J. (eds.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, chap. 20, pp. 411–435. Elsevier, Amsterdam (2015)CrossRefGoogle Scholar
  40. 40.
    Kollmeyer, P.: Panasonic 18650PF Li-ion battery data (2018).
  41. 41.
    Konishi, Y., Huang, Y.-S., Luor, T.-S.: Bridge battery voltage equalizer. US Patent US7612530B2 (2006)Google Scholar
  42. 42.
    Teja, G.K., Prabhaharan, S.R.S.: Smart battery management system with active cell balancing. Indian J. Sci. Technol. 8, 1 (2015)Google Scholar
  43. 43.
    Kroeze, R.C., Krein, P.T.: Electrical battery model for use in dynamic electric vehicle simulations. In: 2008 IEEE Power Electronics Specialists Conference, pp. 1336–1342, June 2008Google Scholar
  44. 44.
    Kutkut, N.H., Wiegman, H.L.N., Divan, D.M., Novotny, D.W.: Charge equalization for an electric vehicle battery system. IEEE Trans. Aerosp. Electron. Syst. 34(1), 235–246 (1998)CrossRefGoogle Scholar
  45. 45.
    Li, J., Mazzola, M., Gafford, J., Younan, N.: A new parameter estimation algorithm for an electrical analogue battery model. In: 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 427–433, February 2012Google Scholar
  46. 46.
    Li, J., Mazzola, M.S.: Accurate battery pack modeling for automotive applications. J. Power Sources 237, 215–228 (2013)CrossRefGoogle Scholar
  47. 47.
    Li, J., Mazzola, M.S., Gafford, J., Jia, B., Xin, M.: Bandwidth based electrical-analogue battery modeling for battery modules. J. Power Sources 218, 331–340 (2012)CrossRefGoogle Scholar
  48. 48.
    Li, Y., Han, Y.: A module-integrated distributed battery energy storage and management system. IEEE Trans. Power Electron. 31(12), 8260–8270 (2016)CrossRefGoogle Scholar
  49. 49.
    Liaw, B.Y., Jungst, R.G., Nagasubramanian, G., Case, H.L., Doughty, D.H.: Modeling capacity fade in lithium-ion cells. J. Power Sources 140(1), 157–161 (2005)CrossRefGoogle Scholar
  50. 50.
    Ling, R., Dan, Q., Zhang, J., Chen, G.: A distributed equalization control approach for series connected battery strings. In: The 26th Chinese Control and Decision Conference (2014 CCDC), pp. 5102–5106, May 2014Google Scholar
  51. 51.
    Liu, W., Song, Y., Liao, H., Li, H., Zhang, X., Jiao, Y., Peng, J., Huang, Z.: Distributed voltage equalization design for supercapacitors using state observer. IEEE Trans. Ind. Appl. 55(1), 620–630 (2018)CrossRefGoogle Scholar
  52. 52.
    Brandl, M., Gall, H., Wenger, M., Lorentz, V., Giegerich, M., Baronti, F., Fantechi, G., Fanucci, L., Roncella, R., Saletti, R., Saponara, S., Thaler, A., Cifrain, M., Prochazka, W.: Batteries and battery management systems for electric vehicles, pp. 971–976, March 2012Google Scholar
  53. 53.
    Mayer, S., Geddes, L.A., Bourland, J.D., Ogborn, L.: Faradic resistance of the electrode/electrolyte interface. Med. Biol. Eng. Comput. 30(5), 538–542 (1992)CrossRefGoogle Scholar
  54. 54.
    Narayanaswamy, S., Kauer, M., Steinhorst, S., Lukasiewycz, M., Chakraborty, S.: Modular active charge balancing for scalable battery packs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(3), 974–987 (2017)CrossRefGoogle Scholar
  55. 55.
    Nitta, N., Wu, F., Lee, J.T., Yushin, G.: Li-ion battery materials: present and future. Mater. Today 15(April), 252–264 (2015)CrossRefGoogle Scholar
  56. 56.
    Omar, N., Widanage, D., Abdel Monem, M., Firouz, Y., Hegazy, O., Van den Bossche, P., Coosemans, T., Van Mierlo, J.: Optimization of an advanced battery model parameter minimization tool and development of a novel electrical model for lithium-ion batteries. Int. Trans. Electrical Energy Syst. 24(12), 1747–1767 (2013)CrossRefGoogle Scholar
  57. 57.
    Pang, S., Farrell, J., Du, J., Barth, M.: Battery state-of-charge estimation. In: Proceedings of the 2001 American Control Conference. (Cat. No. 01CH37148), vol. 2, pp. 1644–1649, June 2001Google Scholar
  58. 58.
    Perez, A., Moreno, R., Moreira, R., Orchard, M., Strbac, G.: Effect of battery degradation on multi-service portfolios of energy storage. IEEE Trans. Sustain. Energy 7(4), 1718–1729 (2016)CrossRefGoogle Scholar
  59. 59.
    Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 2. Modeling and identification. J. Power Sources 134(2), 262–276 (2004)CrossRefGoogle Scholar
  60. 60.
    Qi, J., Lu, D.D.C.: Review of battery cell balancing techniques. In: 2014 Australasian Universities Power Engineering Conference (AUPEC), pp. 1–6, September 2014Google Scholar
  61. 61.
    Rehman, M.U.: Modular, Scalable Battery Systems with Integrated Cell Balancing and DC Bus Power Processing. Ph.D. thesis (2018)Google Scholar
  62. 62.
    Rui, L., Lizhi, W., Xueli, H., Qiang, D., Jie, Z.: A review of equalization topologies for lithium-ion battery packs. In: 2015 34th Chinese Control Conference (CCC), pp. 7922–7927, July 2015Google Scholar
  63. 63.
    Salameh, Z.M., Casacca, M.A., Lynch, W.A.: A mathematical model for lead-acid batteries. IEEE Trans. Energy Convers. 7(1), 93–98 (1992)CrossRefGoogle Scholar
  64. 64.
    Schonberger, J.: Modeling a lithium-ion cell using PLECS. In: Plexim GmbH, pp. 1–5 (2009)Google Scholar
  65. 65.
    Schweiger, H.G., Obeidi, O., Komesker, O., et al.: Comparison of several methods for determining the internal resistance of lithium ion cells. Sensors 10(6), 5604–5625 (2010)CrossRefGoogle Scholar
  66. 66.
    Steinhorst, S., Shao, Z., Chakraborty, S., Kauer, M., Li, S., Lukasiewycz, M., Narayanaswamy, S., Rafique, M.U., Wang, Q.: Distributed reconfigurable battery system management architectures. In: 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 429–434, January 2016Google Scholar
  67. 67.
    Subburaj, A.S., Bayne, S.B.: Analysis of dual polarization battery model for grid applications. In: 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC), pp. 1–7, September 2014Google Scholar
  68. 68.
    Sundararajan, A., Khan, T., Moghadasi, A., Sarwat, A.I.: Survey on synchrophasor data quality and cybersecurity challenges, and evaluation of their interdependencies. J. Mod. Power Syst. Clean Energy 7(3), 449–467 (2018)CrossRefGoogle Scholar
  69. 69.
    Sundararajan, A., Sarwat, A.I.: Roadmap to prepare distribution grid-tied photovoltaic site data for performance monitoring. In: 2017 International Conference on Big Data, IoT and Data Science (BID), pp. 110–115, December 2017Google Scholar
  70. 70.
    Thanagasundram, S., Arunachala, R., Makinejad, K., Teutsch, T., Jossen, A.: A cell level model for battery simulation, pp. 1–13, November 2012Google Scholar
  71. 71.
    Tsang, K.M., Chan, W.L., Wong, Y.K., Sun, L.: Lithium-ion battery models for computer simulation. In: 2010 IEEE International Conference on Automation and Logistics, pp. 98–102, August 2010Google Scholar
  72. 72.
    Uno, M., Kukita, A.: Bidirectional PWM converter integrating cell voltage equalizer using series-resonant voltage multiplier for series-connected energy storage cells. IEEE Trans. Power Electron. 30(6), 3077–3090 (2015)CrossRefGoogle Scholar
  73. 73.
    Johnson, V.H., Pesaran, A.A., Sack, T.: Temperature-dependent battery models for high-power lithium-ion batteries. In: 17th Annual Electric Vehicle Symposium, vol. 12, pp. 1–14 (2001)Google Scholar
  74. 74.
    Verbrugge, M.W., Conell, R.S.: Electrochemical and thermal characterization of battery modules commensurate with electric vehicle integration. J. Electrochem. Soc. 149(1), A45–A53 (2002)CrossRefGoogle Scholar
  75. 75.
    Waag, W., Fleischer, C., Sauer, D.U.: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 258, 321–339 (2014)CrossRefGoogle Scholar
  76. 76.
    Wehbe, J., Karami, N.: Battery equivalent circuits and brief summary of components value determination of lithium ion: a review. In: 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), pp. 45–49, April 2015Google Scholar
  77. 77.
    Yun, J., Yeo, T., Park, J.: High efficiency active cell balancing circuit with soft-switching technique for series-connected battery string. In: 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3301–3304, March 2013Google Scholar
  78. 78.
    Zhang, C., Li, K., Mcloone, S., Yang, Z.: Battery modelling methods for electric vehicles - a review. In: 2014 European Control Conference (ECC), pp. 2673–2678, June 2014Google Scholar
  79. 79.
    Zhang, X., Zhang, W., Lei, G.: A review of Li-ion battery equivalent circuit models. Trans. Electr. Electron. Mater. 17, 311–316 (2016)CrossRefGoogle Scholar
  80. 80.
    Zhao, X., Cai, Y., Yang, L., Deng, Z., Qiang, J.: State of charge estimation based on a new dual-polarization-resistance model for electric vehicles. Energy 135, 40–52 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Asadullah Khalid
    • 1
  • Alexander Hernandez
    • 1
  • Aditya Sundararajan
    • 1
  • Arif I. Sarwat
    • 1
    Email author
  1. 1.Florida International UniversityMiamiUSA

Personalised recommendations