Advertisement

Low Power High Performance Computing on Arm System-on-Chip in Astrophysics

  • Giuliano Taffoni
  • Sara BertoccoEmail author
  • Igor Coretti
  • David Goz
  • Antonio Ragagnin
  • Luca Tornatore
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1069)

Abstract

In this paper, we quantitatively evaluate the impact of computation on the energy consumption on Arm MPSoC platforms, exploiting both CPUs and embedded GPUs. Performance and energy measures are made on a direct N-body code, a real scientific application from the astrophysical domain. The time-to-solutions, energy-to-solutions and energy delay product using different software configurations are compared with those obtained on a general purpose x86 desktop and PCIe GPGPU. With this work, we investigate the possibility of using commodity single boards based on Arm MPSoC as an HPC computational resource for real Astrophysical production runs. Our results show to which extent those boards can be used and which modification are necessary to a production code to profit of them. A crucial finding of this work is the effect of the emulated double precision on the GPU performances that allow to use embedded and gaming GPUs as excellent HPC resources.

Keywords

Arm GPU MPSoC HPC Energy-to-solution Energy Delay Product 

Notes

Acknowledgments

This work was carried out within the ExaNeSt (FET-HPC) project (Grant no. 671553), the ASTERICS project (Grant no. 653477) and EuroExa (FET-HPC) project (Grant no. 754337) funded by the European Union’s Horizon 2020 research and innovation programme.

References

  1. 1.
    Ammendola, R., Biagioni, A., Cretaro, P., Frezza, O., Cicero, F.L., et al.: The next generation of Exascale-class systems: the ExaNeSt project. In: Euromicro Conference on Digital System Design (DSD), Vienna, pp. 510–515 (2017). http://dx.doi.org/10.1109/DSD.2017.20
  2. 2.
  3. 3.
    Gaster, B., Howes, L.W., Kaeli, D.R., Mistry, P., Schaa, D.: Heterogeneous Computing with OpenCL - Revised OpenCL 1.2 Edition. Morgan Kaufmann (2013)Google Scholar
  4. 4.
    Berczik, P., Nitadori, K., Zhong, S., Spurzem, R., Hamada, T., Wang, X., Berentzen, I., Veles, A., Ge, W.: High performance massively parallel direct N-body simulations on large GPU clusters. In: International conference on High Performance Computing, Kyiv, Ukraine, 8–10 October 2011, pp. 8–18 (2011)Google Scholar
  5. 5.
    Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing - MCC -12, p. 13. ACM Press, New York (2012). http://dx.doi.org/10.1145/2342509.2342513
  6. 6.
    Cameron, K.W., Ge, R., Feng, X., Varner, D., Jones, C.: High-performance, power-aware distributed computing framework. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage, and Analysis (SC). ACM/IEEE (2004)Google Scholar
  7. 7.
    Capuzzo-Dolcetta, R., Spera, M.: A performance comparison of different graphics processing units running direct N-body simulations. Comput. Phys. Commun. 184, 2528–2539 (2013)CrossRefGoogle Scholar
  8. 8.
    Doucet, K., Zhang, J.: Learning cluster computing by creating a Raspberry Pi cluster. In: Proceedings of the SouthEast Conference, ACM SE 2017, pp. 191–194 (2017). http://dx.doi.org/10.1145/3077286.3077324
  9. 9.
    Durand, Y., Carpenter, P.M., Adami, S., Bilas, A., Dutoit, D., et al.: EUROSERVER: energy efficient node for European micro-servers. In: 17th Euromicro Conference on Digital System Design, Verona, pp. 206–213 (2014).  https://doi.org/10.1109/DSD.2014.15
  10. 10.
    Farber, R.: Parallel Programming with OpenACC, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2016)Google Scholar
  11. 11.
    Goz, D., Tornatore, L., Bertocco, S., Taffoni, G.: Direct N-body code designed for heterogeneous platforms. In: INAF-OATs Technical Report, vol. 223, July 2018. http://dx.doi.org/10.20371/INAF/PUB/2018_00002
  12. 12.
    Harfst, S., Gualandris, A., Merritt, D., Spurzem, R., Portegies, Z.S., Berczik, P.: Performance analysis of direct N-body algorithms on special-purpose supercomputers. New Astron. 12, 357–377 (2007)CrossRefGoogle Scholar
  13. 13.
    Katevenis, M., Chrysos, N., Marazakis, M., Mavroidis, I., Chaix, F., Kallimanis, N., et al.: The ExaNeSt project: interconnects, storage, and packaging for exascale systems. In: 2016 Euromicro Conference on Digital System Design (DSD), Limassol, pp. 60–67 (2016)Google Scholar
  14. 14.
    Katevenis, M., Ammendola, R., Biagioni, A., Cretaro, P., Frezza, O., Lo, C.F., et al.: Next generation of Exascale-class systems: ExaNeSt project and the status of its interconnect and storage development. Microprocess. Microsyst. 61, 58–71 (2018)CrossRefGoogle Scholar
  15. 15.
    Keller, M., Beutel, J., Thiele, L.: Demo abstract: mountainview precision image sensing on high-alpine locations. In: Pesch, D., Das, S. (Eds.) Adjunct Proceedings of the 6th European Workshop on Sensor Networks, EWSN, Cork, pp. 15–16 (2009)Google Scholar
  16. 16.
    Kobayashi, H.: Feasibility study of a future HPC system for memory-intensive applications: final report. In: Resch, M., Bez, W., Focht, E., Kobayashi, H., Patel, N. (eds.) Sustained Simulation Performance 2014. Springer, Cham (2014)Google Scholar
  17. 17.
    Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carson, W., Dally, W., Denneau, M., Franzon, P., Harrod, W., Hill, K., et al.: Exascale computing study: technology challenges in achieving exascale systems. Technical report, University of NotreDame, CSE Department (2008)Google Scholar
  18. 18.
    Konstantinidis, S., Kokkotas, K.: MYRIAD: a new N-body code for simulations of star clusters. Astron. Astrophys. 522, A70 (2010)CrossRefGoogle Scholar
  19. 19.
    Mantovani, F., Calore, E.: Performance and power analysis of HPC workloads on heterogeneous multi-node clusters. J. Low Power Electron. Appl. 8(2) (2018). http://www.mdpi.com/2079-9268/8/2/13CrossRefGoogle Scholar
  20. 20.
    Martinez, K., Basford, P.J., DeJager, D., Hart, J.K.: Using a heterogeneous sensor network to monitor glacial movement. In: 10th European Conference on Wireless Sensor Networks, Ghent, Belgium (2013)Google Scholar
  21. 21.
    Nitadori, K., Aarseth, S.J.: Accelerating NBODY6 with graphics processing units. MNRAS 424, 545–552 (2012)CrossRefGoogle Scholar
  22. 22.
    Nitadori, K., Makino, J.: Sixth- and eighth-order Hermite integrator for N-body simulations. New Astron. 13, 498–507 (2008)CrossRefGoogle Scholar
  23. 23.
    Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue 6(2), 40–53 (2008).  https://doi.org/10.1145/1365490.1365500CrossRefGoogle Scholar
  24. 24.
    Ou, Z., Pang, B., Deng, Y., Nurminen, J., Yla-Jaaski, A., Hui, P.: Energy- and cost-efficiency analysis of ARM-based clusters. In: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2012, pp. 115–123 (2012)Google Scholar
  25. 25.
    Rajovic, N., Rico, A., Puzovic, N., Adeniyi-Jones, C., Ramirez, A.: Tibidabo: making the case for an ARM-based HPC system. Future Gener. Comput. Syst. 36 322–334 (2014). http://dx.doi.org/10.1016/J.FUTURE.2013.07.013CrossRefGoogle Scholar
  26. 26.
    Spera, M.: Using Graphics Processing Units to solve the classical N-body problem in physics and astrophysics. ArXiv e-prints 1411.5234 (2014)
  27. 27.
    Spera, M., Capuzzo-Dolcetta, R.: Rapid mass segregation in small stellar clusters. Astrophys. Space Sci. 362(12), 12 (2017). article id 233Google Scholar
  28. 28.
    Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance datawith papi-c. In: Muller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools for High Performance Computing 2009, pp. 157–173. Springer, Heidelberg (2009)Google Scholar
  29. 29.
    Thall, A.: Extended-precision floating-point numbers for GPU computation, p. 52 (2006).  https://doi.org/10.1145/1179622.1179682
  30. 30.
    Turton, P., Turton, T.F.: Pibrain’a cost-effective supercomputer for educational use. In: 5th Brunei International Conference on Engineering and Technology, BICET 2014, pp. 1–4 (2014)Google Scholar
  31. 31.
    Upton, E., Halfacree, G.: Raspberry Pi User Guide, 4th ed. Wiley (2016)Google Scholar
  32. 32.
    Yoneki, E.: Demo: RasPiNET: decentralised communication and sensing platform with satellite connectivity. In: Proceedings of the 9th ACM MobiCom Workshop on Challenged Networks - CHANTS -14. ACM Press, New York, pp. 81–84 (2014). http://dx.doi.org/10.1145/2645672.2645691

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Giuliano Taffoni
    • 1
  • Sara Bertocco
    • 1
    Email author
  • Igor Coretti
    • 1
  • David Goz
    • 1
  • Antonio Ragagnin
    • 1
  • Luca Tornatore
    • 1
  1. 1.National Institute of AstrophysicsAstronomical Observatory of TriesteTriesteItaly

Personalised recommendations