Advertisement

Time4sys2imi: A Tool to Formalize Real-Time System Models Under Uncertainty

  • Étienne André
  • Jawher JerrayEmail author
  • Sahar Mhiri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11884)

Abstract

Time4sys is a formalism developed by Thales Group, realizing a graphical specification for real-time systems. However, this formalism does not allow to perform formal analyses for real-time systems. So a translation of this tool to a formalism equipped with a formal semantics is needed. We present here Time4sys2imi, a tool translating Time4sys models into parametric timed automata in the input language of IMITATOR. This translation allows not only to check the schedulability of real-time systems, but also to infer some timing constraints (deadlines, offsets\(\ldots \)) guaranteeing schedulability. We successfully applied Time4sys2imi to various examples.

Keywords

Real-time systems Scheduling Model checking Parametric timed automata Parameter synthesis 

Notes

Acknowledgements

We thank Romain Soulat and Laurent Rioux from Thales R&D for useful help concerning Time4sys.

References

  1. 1.
    Adbeddaïm, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor. Comput. Sci. 354(2), 272–300 (2006).  https://doi.org/10.1016/j.tcs.2005.11.018MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–601. ACM, New York, NY, USA (1993).  https://doi.org/10.1145/167088.167242
  3. 3.
    André, É.: A unified formalism for monoprocessor schedulability analysis under uncertainty. In: Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds.) FMICS/AVoCS -2017. LNCS, vol. 10471, pp. 100–115. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67113-0_7CrossRefGoogle Scholar
  4. 4.
    André, É.: Formalizing Time4sys using parametric timed automata. In: Méry, D., Qin, S. (eds.) TASE, pp. 176–183. IEEE (2019).  https://doi.org/10.1109/TASE.2019.00031
  5. 5.
    André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32759-9_6CrossRefGoogle Scholar
  6. 6.
    André, É., Jerray, J., Mhiri, S.: Time4sys2imi: a tool to formalize real-time system models under uncertainty (long version). arXiv (2019). https://arxiv.org/pdf/1907.13447.pdf
  7. 7.
    Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic computation of schedulability regions using parametric timed automata. In: RTSS, pp. 80–89. IEEE Computer Society (2008).  https://doi.org/10.1109/RTSS.2008.36
  8. 8.
    Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: schedulability, decidability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007).  https://doi.org/10.1016/j.ic.2007.01.009MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fribourg, L., Lesens, D., Moro, P., Soulat, R.: Robustness analysis for scheduling problems using the inverse method. In: TIME, pp. 73–80. IEEE Computer Society Press (2012).  https://doi.org/10.1109/TIME.2012.10
  10. 10.
    González Harbour, M., Gutiérrez García, J.J., Palencia Gutiérrez, J.C., Drake Moyano, J.M.: MAST: modeling and analysis suite for real time applications. In: ECRTS, pp. 125–134. IEEE Computer Society (2001).  https://doi.org/10.1109/EMRTS.2001.934015
  11. 11.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997).  https://doi.org/10.1007/s100090050010CrossRefzbMATHGoogle Scholar
  12. 12.
    Norström, C., Wall, A., Yi, W.: Timed automata as task models for event-driven systems. In: RTCSA, pp. 182–189. IEEE Computer Society (1999).  https://doi.org/10.1109/RTCSA.1999.811218
  13. 13.
    OMG: Modeling and analysis of real-time and embedded systems (MARTE) (2008). http://www.omg.org/omgmarte/
  14. 14.
    Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time scheduling framework. In: SIGAda, pp. 1–8. ACM (2004).  https://doi.org/10.1145/1032297.1032298
  15. 15.
    Sun, Y., Soulat, R., Lipari, G., André, É., Fribourg, L.: Parametric schedulability analysis of fixed priority real-time distributed systems. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2013. CCIS, vol. 419, pp. 212–228. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05416-2_14CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Paris 13, LIPN, CNRS, UMR 7030VilletaneuseFrance
  2. 2.JFLI, CNRSTokyoJapan
  3. 3.National Institute of InformaticsTokyoJapan

Personalised recommendations