Advertisement

Optimal Run Problem for Weighted Register Automata

  • Hiroyuki SekiEmail author
  • Reo Yoshimura
  • Yoshiaki Takata
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11884)

Abstract

Register automata (RA) are a computational model that can handle data values by adding registers to finite automata. Recently, weighted register automata (WRA) were proposed by extending RA so that weights can be specified for transitions. In this paper, we first investigate decidability and complexity of decision problems on the weights of runs in WRA. We then propose an algorithm for the optimum run problem related to the above decision problems. For this purpose, we use a register type as an abstraction of the contents of registers, which is determined by binary relations (such as \(=\), <, etc.) handled by WRA. Also, we introduce a subclass where both the applicability of transition rules and the weights of transitions are determined only by a register type. We present a method of transforming a given WRA satisfying the assumption to a weighted directed graph such that the optimal run of WRA and the minimum weight path of the graph correspond to each other. Lastly, we discuss the optimal run problem for weighted timed automata as an example.

Notes

Acknowledgements

The authors thank the reviewers for providing valuable comments to the paper. This work was supported by JSPS KAKENHI Grant Number JP19H04083.

References

  1. 1.
    Almagor, S., Cadilhac, M., Mazowiecki, F., Pérez, G.A.: Weak cost register automata are still powerful. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 83–95. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98654-8_7CrossRefGoogle Scholar
  2. 2.
    Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular functions and cost register automata. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, 25–28 June 2013, pp. 13–22 (2013).  https://doi.org/10.1109/LICS.2013.65
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994).  https://doi.org/10.1016/0304-3975(94)90010-8MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45351-2_8CrossRefGoogle Scholar
  5. 5.
    Babari, P., Droste, M., Perevoshchikov, V.: Weighted register automata and weighted logic on data words. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 370–384. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46750-4_21CrossRefGoogle Scholar
  6. 6.
    Babari, P., Droste, M., Perevoshchikov, V.: Weighted register automata and weighted logic on data words. Theor. Comput. Sci. 744, 3–21 (2018).  https://doi.org/10.1016/j.tcs.2018.01.004MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced time automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45351-2_15CrossRefGoogle Scholar
  8. 8.
    Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logical Methods Comput. Sci. 10(3) (2014).  https://doi.org/10.2168/LMCS-10(3:4)2014
  9. 9.
    Bouyer, P.: A logical characterization of data languages. Inf. Process. Lett. 84(2), 75–85 (2002).  https://doi.org/10.1016/S0020-0190(02)00229-6MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cheng, E.Y., Kaminski, M.: Context-free languages over infinite alphabets. Acta Informatica 35(3), 245–267 (1998).  https://doi.org/10.1007/s002360050120MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Log. 10(3), 16:1–16:30 (2009).  https://doi.org/10.1145/1507244.1507246MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kaminski, M., Francez, N.: Finite-memory automata. Theoret. Comput. Sci. 134(2), 329–363 (1994).  https://doi.org/10.1016/0304-3975(94)90242-9MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Libkin, L., Tan, T., Vrgoč, D.: Regular expressions for data words. J. Comput. Syst. Sci. 81(7), 1278–1297 (2015).  https://doi.org/10.1016/j.jcss.2015.03.005MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: 15th International Conference on Database Theory (ICDT 2012), pp. 74–85 (2012).  https://doi.org/10.1145/2274576.2274585
  15. 15.
    Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid systems. Automatica 35(3), 349–370 (1999).  https://doi.org/10.1016/S0005-1098(98)00193-9MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. In: 19th ACM Symposium on Principles of Database Systems (PODS 2000), pp. 11–22 (2000).  https://doi.org/10.1145/335168.335171
  17. 17.
    Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004).  https://doi.org/10.1145/1013560.1013562MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theor. Comput. Sci. 231(2), 297–308 (2000).  https://doi.org/10.1016/S0304-3975(99)00105-XMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Senda, R., Takata, Y., Seki, H.: Complexity results on register context-free grammars and register tree automata. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp. 415–434. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-02508-3_22CrossRefGoogle Scholar
  20. 20.
    Senda, R., Takata, Y., Seki, H.: Generalized register context-free grammars. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp. 259–271. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-13435-8_19CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nagoya UniversityNagoyaJapan
  2. 2.Kochi University of TechnologyKamiJapan

Personalised recommendations