Advertisement

The Regulatory Tangle

  • Miguel Angel Rapela
Chapter

Abstract

This chapter contains an exhaustive description and evolution of the main international treaties on patents, breeder’s rights, genetic resources, and biosafety. The difficulties of adapting these frameworks to the development of new technologies, especially gene editing, are considered. Five real gene-editing cases are analyzed in the current scenario of separate treaties and regulations.

Keywords

Regulatory frameworks Intellectual property rights Patents Plant breeder rights Biotechnological inventions Plant genetic resources Biosafety Gene editing 

References

  1. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nature 550(7675):280–284CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alkan F, Wenzel A, Anthon C, Havgaard JH, Gorodkin J (2018) CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters. Genome Biol 19:177.  https://doi.org/10.1186/s13059-018-1534-xCrossRefPubMedPubMedCentralGoogle Scholar
  3. APHIS (2017) Importation, interstate movement, and environmental release of certain genetically engineered organisms. A proposed rule by the Animal and Plant Health Inspection. Service on 01/19/2017. https://www.federalregister.gov/documents/2017/01/19/2017-00858/importation-interstate-movement-and-environmental-release-of-certain-genetically-engineered
  4. Barraclough E (2013) What Myriad means for biotech. WIPO Mag 4/2013Google Scholar
  5. Bass K (2015) The battle over plant genetic resources: interpreting the international treaty for plant genetic resources. Chic J Int Law 16(1):7. Available at: http://chicagounbound.uchicago.edu/cjil/vol16/iss1/7Google Scholar
  6. Bergadá P, Rapela M, Enríquez R, Risso D, Mendizabal J (2016) Generating value in the soybean chain through royalty collection: an international study. BioSci Law Rev 15(5):169–210Google Scholar
  7. Bhatti S (2016) Use it or lose it: the international treaty provides access to key plant breeding material. Eur Seed 3(4):19–22Google Scholar
  8. Boyle J (2003) The second enclosure movement and the construction of the public domain. Law Contemp Probl 66:33–74. http://creativecommons.org/licenses/by-sa/1.0. It is also available at http://www.law.duke.edu/journals/66LCPBoyleGoogle Scholar
  9. Bragdon S (ed) (2004) International law of relevance to plant genetic resources: a practical review for scientists and other professionals working with plant genetic resources. Issues in genetic resources, No 10, March 2004. International Plant Genetic Resources Institute, RomeGoogle Scholar
  10. Campi M (2016a) The effect of intellectual property rights on agricultural productivity. Agric Econ 48:1–13Google Scholar
  11. Campi M (2016b) Innovation and intellectual property rights: the case of soybean seeds in Argentina and the United States. In: Al-Hakim L, Wu X, Koronios A, Shou Y (eds) Handbook of research on driving competitive advantage through sustainable, lean, and disruptive innovation. Pennsylvania IGI Global, Hershey, pp 334–354CrossRefGoogle Scholar
  12. CAST (2018a) Regulatory barriers to the development of innovative agricultural biotechnology by small businesses and universities. CAST – Council for Agricultural Science and Technology, March 2018, Number 59Google Scholar
  13. CAST (2018b) Genome editing in agriculture: methods, applications, and governance. CAST – Council for Agricultural Science and Technology, July 2018, Number 60Google Scholar
  14. CBD (2016) Convention on biological diversity, subsidiary body on scientific, technical and technological advice. Twentieth meeting Montreal, Canada, 25–30 April 2016 Agenda item 6 Synthetic Biology, Draft recommendation submitted by the ChairGoogle Scholar
  15. CBD (2018a) Synthetic biology. Draft decision submitted by the Chair. SBSTTA, Subsidiary Body on Scientific, Technical and Technological Advice. Twenty-second meeting Montreal, Canada, 2–7 July 2018. CDB/SBSTTA/22/L.6Google Scholar
  16. CBD (2018b) Digital sequence information on genetic resources. Draft decision submitted by the Chair. SBSTTA, Subsidiary Body on Scientific, Technical and Technological Advice. Twenty-second meeting Montreal, Canada, 2–7 July 2018. CDB/SBSTTA/22/CRP.10Google Scholar
  17. Ceasar SA, Rajan V, Prykhozhij SV, Berman JN, Ignacimuthu S (2016) Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. Biochim Biophys Acta 1863:2333–2344CrossRefGoogle Scholar
  18. Chen A, Puttitanuna T (2005) Intellectual property rights and innovation in developing countries. J Dev Econ 78:474–493CrossRefGoogle Scholar
  19. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823.  https://doi.org/10.1126/science.1231143CrossRefPubMedPubMedCentralGoogle Scholar
  20. Correa CM, Shashikant S, Meienberg F (2015) Plant variety protection in developing countries: a tool for designing a sui generis plant variety protection system: an alternative to UPOV 1991. Association for Plant Breeding for the Benefit of Society (APBREBES) and its member organizations: Berne Declaration, Development Fund, SEARICE, Third World Network. Available at http://www.apbrebes.org/news/new-publication-plant-variety-protection-developing-countries-tool-designing-sui-generis-plant. Accessed 24 Oct 2017
  21. Correa CM (2016) IP and economic development. In: WIPO conference on intellectual property and economic development, Geneva, 7 Apr to 8 Apr 2016Google Scholar
  22. CTNBio (2018) Resolução Normativa N° 16, de 15 de janeiro de 2018Google Scholar
  23. de Felipe M, Gerde JA, Rotundo JL (2016) Soybean genetic gain in maturity groups III to V in Argentina from 1980 to 2015. Crop Sci 56(6).  https://doi.org/10.2135/cropsci2016.04.0214
  24. Duensing N, Sprink T, Parrott WA, Fedorova M, Lema MA, Wolt JD, Bartsch D (2018) Novel features and considerations for ERA and regulation of crops produced by genome editing. Front Bioeng Biotechnol 6:1–16CrossRefGoogle Scholar
  25. Dugar G, Leenay RT, Eisenbart SK, Bischler T, Aul BU, Beisel CL, Sharma CM (2018) CRISPR RNA-dependent binding and cleavage of endogenous RNAs by the Campylobacter jejuni Cas9. Mol Cell 69(5):893–905.e7.  https://doi.org/10.1016/j.molcel.2018.01.032CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dutfield GM, Roberts TW (2017) Intellectual property rights. In: Thomas B, Murray BG, Murphy D (eds) Encyclopedia of applied plant sciences, Breeding genetics and biotechnology, vol 2, 2nd edn. Elsevier, Academic Press, Amsterdam, pp 23–27CrossRefGoogle Scholar
  27. Egelie KJ, Graff GD, Strand SP, Johansen B (2016) The emerging patent landscape of CRISPR-Cas gene editing technology. Nat Biotechnol 34(10):1025–1031CrossRefPubMedPubMedCentralGoogle Scholar
  28. European Academies (2015) New breeding techniques. European Academies Science Advisory Council. http://www.interacademies.net/File.aspx?id=28130
  29. European Commission (2017) New plant breeding techniques. http://ec.europa.eu/food/plant/gmo/legislation/plant_breeding_enGoogle Scholar
  30. Eyhérabide G (2015) Evolución y cambios recientes de los rendimientos medios nacionales del cultivo de maíz en Argentina. Revista de Tecnología Agropecuaria INTA Pergamino 10(29):6–12Google Scholar
  31. Falck-Zepeda J, Wesseler J, Smyth SJ (2013) The current status of the debate on socio-economic regulatory assessments: positions and policies in Canada, the USA, the EU and developing countries. World Rev Sci Technol Sust Dev 10:203–227.  https://doi.org/10.1504/WRSTSD.2013.057690CrossRefGoogle Scholar
  32. FDA (2017) Genome editing in new plant varieties used for foods; request for comments. A notice by the Food and Drug Administration on 01/19/2017. https://www.federalregister.gov/documents/2017/01/19/2017-00840/guidance-genome-editing-in-new-plant-varieties-used-for-foods
  33. Gao C (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19:275–276CrossRefGoogle Scholar
  34. Genetic Literacy Project (2016) How are governments regulating CRISPR and New Breeding Technologies (NBTs)? http://gmo.geneticliteracyproject.org/FAQ/how-are-governments-regulating-crispr-and-new-breeding-technologies-nbts/
  35. Georges F, Ray H (2017) Genome editing of crops: A renewed opportunity for food security. GM Crops & Food 8:1–12CrossRefGoogle Scholar
  36. GHR (2018) What are genome editing and CRISPR-Cas9. Genetics Home Reference. https://ghr.nlm.nih.gov/primer/genomicresearch/genomeediting
  37. Greiber T, Peña Moreno S, Åhrén M, Nieto Carrasco J, Kamau EC, Cabrera Medaglia J, Oliva MJ, Perron-Welch F, in cooperation with Ali N, Williams C (2012) An explanatory guide to the Nagoya Protocol on access and benefit-sharing, vol XVIII. IUCN, Gland, 399 ppGoogle Scholar
  38. Grens K (2018) Japanese authorities recommend not regulating gene editing. The Scientist, Aug 2018. https://www.the-scientist.com/news-opinion/japanese-authorities-recommend-not-regulating-gene-editing-64675
  39. Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018:eaav4294.  https://doi.org/10.1126/science.aav4294CrossRefGoogle Scholar
  40. Hein T (2018) No access, no benefits – part 3 – the view from academia. European Seed, posted on December 12th, 2018 by Treena Hein. Int News Regul 5(4)
  41. ICA (2018) Resolución del Instituto Colombiano Agropecuario No 29.299 del 01/08/18Google Scholar
  42. ICC (2017) Summary of Convention on Biological Diversity COP-13 and Nagoya Protocol meetings. Commission on Intellectual Property, International Chamber of Commerce, 9 Jan 2017 DYE/absGoogle Scholar
  43. ISF (2003) Disclosure of origin in intellectual property protection applications. Position paper of the International Seed Federation, adopted in Bangalore, June 2003Google Scholar
  44. ISF (2012) ISF view on Intellectual Property. Position paper of the international seed federation, adopted in Rio de Janeiro, Brazil, 28 June 2012Google Scholar
  45. ISF (2018) Digital sequence information. Position paper of the international seed federation. June 2018Google Scholar
  46. Ishii T, Araki M (2016) A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops Food:22–34. Published online: 14 Dec 2016.  https://doi.org/10.1080/21645698.2016.1261787
  47. Israel (2017) Ministry of Agriculture and Rural Development, National Committee for Transgenic Plants (NCTP) summary of NCTP meeting of 08/08/16. Published on 5 Mar 2017Google Scholar
  48. Jiang W, Bikard D, Cox D, Zhang F, Marraffini L (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239CrossRefPubMedPubMedCentralGoogle Scholar
  49. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.  https://doi.org/10.1126/science.1225829CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jones HD (2015) Future of breeding by genome editing is in the hands of regulators. GM Crops Food 6(4):223–232.  https://doi.org/10.1080/21645698.2015.1134405CrossRefPubMedGoogle Scholar
  51. Jones HD (2016) Are plants engineered with CRISPR technology genetically modified organisms? Biochem Soc, June 2016:14–17Google Scholar
  52. Kariyawasam K, Tsai M (2018) Access to genetic resources and benefit sharing – implications of Nagoya Protocol on providers and users. J World Intellect Prop 21(5–6):289–305CrossRefGoogle Scholar
  53. Kim H, Kim S-T, Ryu J, Kang B-C, Kim J-S, Kim S-G (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun.  https://doi.org/10.1038/ncomms14406
  54. Kistler L, Yoshi Maezumi S, de Souza JG, Przelomska NAS, Malaquias Costa F, Smith O, Loiselle H, Ramos-Madrigal J, Wales N, Rivail Ribeiro E, Morrison RR, Grimaldo C, Prous AP, Arriaza B, Gilbert MTP, de Oliveira Freitas F, Allaby RG (2018) Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362(6420):1309.  https://doi.org/10.1126/science.aav0207CrossRefPubMedGoogle Scholar
  55. Kock M (2009) Patents for life: the role of intellectual property rights on plant innovations. BioSci Law Rev 10(5):167–176Google Scholar
  56. Kock M (2013) Adapting IP to an evolving agricultural innovation landscape. WIPO Mag. http://www.wipo.int/wipo_magazine/en/2013/02/article_0007.html
  57. Kozubek L (2016) Modern Prometheus: editing the human genome with CRISPR-Cas9. Cambridge University PressGoogle Scholar
  58. Kwong M (2014). Six significant moments in patent history. Oil in the Spotlight, 4 Nov 2014.Google Scholar
  59. Lange CE, Federizzi LC (2009) Estimation of soybean genetic progress in the south of Brazil using multienvironmental yield trials. Sci Agric (Piracicaba, Braz) 66(3):309–316CrossRefGoogle Scholar
  60. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261.  https://doi.org/10.1038/ncomms14261CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker I, Paran I et al (2008) The making of a compound inflorescence in tomato and related nightshades. PLoS Biol 6(11):e288.  https://doi.org/10.1371/journal.pbio.0060288CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E (2011) New plant breeding techniques – state-of-the-art and prospects for commercial development. European Commission’s Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS), JRC Institute for Health and Consumer Protection (IHCP) EUR 24760 EN – 2011Google Scholar
  63. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826.  https://doi.org/10.1126/science.1232033CrossRefPubMedPubMedCentralGoogle Scholar
  64. Marchant GE, Stevens YA (2015) A new window of opportunity to reject process-based biotechnology regulation. GM Crops Food 6:233–242CrossRefGoogle Scholar
  65. McDougall P (2011) The cost and time involved in the discovery, development and authorization of a new plant biotechnology derived trait. A consultancy study for CropLife InternationalGoogle Scholar
  66. McHughen A (2012) Introduction to the GM crops special issue on biosafety, food and GM regulation. GM Crops Food 3(1):6–8.  https://doi.org/10.4161/gmcr.17646CrossRefPubMedGoogle Scholar
  67. Ming-Hui J, Yu-Tao X, Ying C, Jie H, Chao-Bin X, Kong-Ming W (2018) Chromosomal deletions mediated by CRISPR/Cas9 in Helicoverpa armigera. Insect Sci.  https://doi.org/10.1111/1744-7917.12570
  68. Mojica JM, Montoliu L (2016) On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends Microbiol 24(10):811–820Google Scholar
  69. Moore G, Tymowski W (2005) Explanatory guide on the international treaty on plant genetic resources for food and agriculture. IUCN, Gland and CambridgeCrossRefGoogle Scholar
  70. Myszczuk AP, De Meirelles ML (2014) Patents and living matter: the construction of a patent system attractive to biotechnology. In: de Miguel Beriain I, Romeo Casabona CM (eds) Symbio and human health: a challenge to the current IP framework? Springer Science+Business Media, DordrechtGoogle Scholar
  71. NAP (2016) Genetically engineered crops: experience and prospects.. Committee on Genetically Engineered Crops: past experience and future prospects; Board on Agriculture and Natural Resources; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine. The National Academies Press, Washington, DC.  https://doi.org/10.17226/23395.CrossRefGoogle Scholar
  72. NAP (2017) Advancing concepts and models for measuring innovation: proceedings of a workshop. National Academies of Sciences, Engineering, and Medicine. The National Academies Press, Washington, DC.  https://doi.org/10.17226/23640CrossRefGoogle Scholar
  73. Nature Editorials (2017) Legal Limbo: Europe is drugging its feet on gene editing rules and scientists should push the issue. Nature 242:392Google Scholar
  74. Noriega IL, Halewood M, Galluzzi G, Vernooy R, Bertacchini E, Gauchan D, Welch E (2013) How policies affect the use of plant genetic resources: the experience of the CGIAR. Resources 2:231–269CrossRefGoogle Scholar
  75. OJEU (2017) Request for a preliminary ruling from the Conseil d’État (France) lodged on 17 October 2016 — Confédération paysanne, Réseau Semences Paysannes, Les Amis de la Terre France, Collectif vigilance OGM et Pesticides 16, Vigilance OG2M, CSFV 49, OGM: dangers, Vigilance OGM 33, Fédération Nature et Progrès v Premier ministre, Ministre de l’agriculture, de l’agroalimentaire et de la forêt (Case C-528/16) (2017/C 014/29) Language of the case: French. Off J Eur Union (OJEU), 16.01.2017Google Scholar
  76. OJEU (2018a) Opinion of Advocate General Bobej, delivered on 18 January 2018. Case C-528/16. Off J Eur Union (OJEU), 18-01-2018Google Scholar
  77. OJEU (2018b) Judgment of the court in case C-528/16. Off J Eur Union (OJEU) 25-07-2018Google Scholar
  78. Overdijk TFW (2013) Essentially derived varieties: case law in the Netherlands and connected observations. UPOV EDV SEMINAR Geneva, 22 October 2013Google Scholar
  79. Overmann J, Scholz AH (2017) Microbiological research under the Nagoya Protocol: facts and fiction. Sci Soc 25(2):85–88.  https://doi.org/10.1016/j.tim.2016.11.001CrossRefGoogle Scholar
  80. Phillips PWB (2017) Ownership of plant genetic resources. In: Thomas B, Murray BG, Murphy D (eds) Encyclopedia of applied plant sciences, Breeding genetics and biotechnology, vol 2, 2nd edn. Elsevier, Academic Press, Amsterdam, p 28CrossRefGoogle Scholar
  81. Prathapan D, Pethiyagoda R, Bawa KS, Raven PH, Rajan PD, 172 co-signatories from 35 countries (2018) When the cure kills: CBD limits biodiversity research. Science 360(6396):1405–1406CrossRefGoogle Scholar
  82. Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8CrossRefGoogle Scholar
  83. Rani R, Yadav P, Barbadikar KM, Baliyan N, Malhotra EV, Singh BK, Kumat A, Singh D (2016) CRISPR/Cas9: a promising way to exploit genetic variation in plants. Biotechnol Lett 38:1991–2006CrossRefGoogle Scholar
  84. Rapela MA (2000) Derechos de propiedad intelectual en vegetales superiores. Editorial Ciudad Argentina, 466 páginasGoogle Scholar
  85. Rapela MA (2005) Plantas transgénicas, bioseguridad y principio precautorio. Editorial de la Universidad Nacional de La Plata, 570 páginasGoogle Scholar
  86. Rapela MA (2006) Excepción del fitomejorador: de la libre disponibilidad a la variedad esencialmente derivada. En: “Innovación y Propiedad Intelectual en Mejoramiento Vegetal y Biotecnología Agrícola”, Rapela, Miguel Ángel, (Director Académico), Gustavo J. Schötz (coordinador), Enrique del Acebo Ibáñez, Juan Miguel Massot, Helena María Noir, Fernando Sánchez, Andrés Sánchez Herrero, María Celina Strubbia y Mónica Witthaus. Editorial Heliasta, páginas 207–242Google Scholar
  87. Rapela MA (2008) El concepto de Variedad Esencialmente Derivada y la Excepción al Fitomejorador dentro del Derecho del Obtentor. 2° Congreso Nacional e Internacional de Agrobiotecnología, Propiedad Intelectual y Políticas Públicas. Universidad Nacional de Córdoba, 27 a 29 de agosto de 2008Google Scholar
  88. Rapela MA (2010) Farmer’s exception, farmer’s rights and other related issues. Seed News XIV(1):28–29Google Scholar
  89. Rapela MA (2013) Patents and the seed industry. Seed News XVII(3):20–25Google Scholar
  90. Rapela MA (2014a) La era post transgénicia y el desafío de las nuevas técnicas de mejoramiento. Actas del Seminario organizado por el Instituto de Genética “Ewald Favret” del INTA Castelar en conmemoración del 45 Aniversario de la Sociedad Argentina de Genética y los 50 años de la creación del híbrido de maíz forrajero. Castelar, 5 de diciembre 2014Google Scholar
  91. Rapela MA (2014b) Post-Transgenesis: new plant breeding techniques. Seed News Mag XVIII:14–15Google Scholar
  92. Rapela MA (2014c) The Nagoya protocol. Seed News XVIII(6):16–19Google Scholar
  93. Rapela MA (2015) The adoption of conventions and treaties related to genetic resources and intellectual property issues: current situation and status in the SAA region. Conference at the 5th congress of the Seed Association of the Americas. Cancún, México, 10 Sept 2015Google Scholar
  94. Rapela MA (2016) Ley 20.247 de Semillas y Creaciones Fitogenéticas: las razones para su actualización y los proyectos bajo análisis en Argentina. Revista Interdisciplinaria de Estudios Agrarios, Facultad de Ciencias Económicas, Universidad de Buenos Aires, No 43, 2° Semestre 2016. No 45: 69–98Google Scholar
  95. Rapela MA (2018a) Gene editing and CRISPR-Cas. Seed News Mag XXII:12–16Google Scholar
  96. Rapela MA (2018b) Metodología de CRISPR, aspectos legales y regulatorios. Actas XI Congreso Nacional de Maíz, Mesa de Genética y Mejoramiento Genético Vegetal, págs. 266–270Google Scholar
  97. Rapela MA (2018c) Edición Génica mediante sistemas CRISPR/Cas. AGROPOST CPIA-Consejo Profesional de Ingeniería Agronómica, No 155, abril-mayo, págs 11–13Google Scholar
  98. Rapela MA, Levitus G (2014) Novas técnicas do melhoramento. In: Anuario da ABRASEM. Associação Brasileira de Sementes e Mudas, Páginas, pp 29–32Google Scholar
  99. Rojas B, Lorena D (2013) Vicissitudes of Nagoya Protocol in Colombia. 16(3):17–23Google Scholar
  100. Ruiz Muller M (2015) Genetic resources as natural information: implications for the convention on biological diversity and Nagota Protocol. Taylor & Francis Ltd, New York, 170 ppCrossRefGoogle Scholar
  101. Ruiz Muller M, Caillaux Zazzali J (2014) Propiedad Intelectual y acceso a Recursos Gnéticos en un ambiente altamente politizado y “desinformado”. Anuario Andino de Derechos Intelectuales X(10):317–332Google Scholar
  102. Ruiz Muller M, Henry Vogel J, Zamudio T (2010) La lógica debe prevalecer: un nuevo marco teórico y operativo para el Régimen Internacional de Acceso a RGV y Distribución Justa y Equitativa de Beneficios. Documentos de Investigación V(13)Google Scholar
  103. SAGYP (2015) Resolución 173/2015 estableciendo procedimientos de los productos derivados de nuevas técnicas de mejoramiento. Secretaría de Agricultura, Ganadería y Pesca de Argentina. http://servicios.infoleg.gob.ar/infolegInternet/anexos/245000-249999/246978/norma.htm
  104. Samanta MK, Dey S, Gayem S (2016) CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res 25:561–573CrossRefGoogle Scholar
  105. Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, Walker KA, Beetham PR, Schöpke CR, Gocal GFW (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170(4):1917–1928.  https://doi.org/10.1104/pp.15.01696CrossRefPubMedPubMedCentralGoogle Scholar
  106. Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops – bringing together genomics and genome editing. New Phytol 216:682.  https://doi.org/10.1111/nph.14702CrossRefPubMedGoogle Scholar
  107. Schmidt S (2018) To regulate or not to regulate: current legal status for gene-edited crops. Global Engage. http://www.global-engage.com/agricultural-biotechnology/to-regulate-or-not-to-regulate-current-legal-status-for-gene-edited-crops/
  108. Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8.  https://doi.org/10.1186/s13007-016-0103-0CrossRefPubMedPubMedCentralGoogle Scholar
  109. Schindele P, Wolter F, Puchta H (2018) Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett:13073.  https://doi.org/10.1002/1873-3468
  110. Schuttelaar & Partners (2016) The regulatory status of new breeding techniques in countries outside the European Union. Document developed by Schuttelaar & Partners Version. Schuttelaar & Partners, The Hague, The Netherlands, June 2015; 65 ppGoogle Scholar
  111. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2016) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207.  https://doi.org/10.1111/pbi.12603CrossRefPubMedPubMedCentralGoogle Scholar
  112. Shimatani Z, Fujikura U, Ishii H, Matsui Y, Suzuki M, Ueke Y, Taoka K, Terada R, Nishida K, Kondo A (2018) Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiol Biochem 131:78.  https://doi.org/10.1016/j.plaphy.2018.04.028CrossRefPubMedGoogle Scholar
  113. Shreya, Rana K, Ainmisha (2017) CRISPR/Cas9: a nobel approach for genome editing. Int J Curr Microbiol App Sci 6(5):1866–1871.  https://doi.org/10.20546/ijcmas.2017.605.205CrossRefGoogle Scholar
  114. SINGER (2016) Data base of the System-Wide Information Network for Genetic resources (SINGER). http://www.singer.cgiar.org. Accessed Sept 2016
  115. Smith JSC, Jones ES, Nelson BK (2013) The use of molecular marker data to assist in the determination of essentially derived varieties. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Vol 1. Managing, sequencing and mining genetic resources. Springer, Dordrecht, pp 49–66Google Scholar
  116. Smyth SJ, Phillips PWB (2014) Risk, regulation and biotechnology: the case of GM crops. GM Crops & Food 5(3):170–177.  https://doi.org/10.4161/21645698.2014.945880CrossRefGoogle Scholar
  117. Smyth SJ, McDonald J, Falck-Zepeda JB (2014) Investment, regulation, and uncertainty: Managing new plant breeding techniques. GM Crops Food Biotechnol Agric Food Chain 5:4–3.  https://doi.org/10.4161/gmcr.27465CrossRefGoogle Scholar
  118. Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, Park SJ, Goren A, Jiang K, Ramos A, van der Knaap E, van Eck J, Zamir D, Eshed Y, Lippman ZB (2017) Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell.  https://doi.org/10.1016/j.cell.2017.04.032
  119. Tagliabue G (2016) The EU legislation on “GMOs” between nonsense and protectionism: an ongoing Schumpeterian chain of public choices. GM Crops Food:35–51.  https://doi.org/10.1080/21645698.2016.1270488
  120. Urnov FD (2018) Genome editing B.C. (before CRISPR): lasting lessons from the “old testament”. CRISPR J 1:34–46CrossRefGoogle Scholar
  121. USDA (2018) Secretary Perdue Issues USDA statement on plant breeding innovation. USDA Animal and Plant Health Inspection Service, Washington, D.C., 28 Mar 2018Google Scholar
  122. Van den Hurk A (2011) Access to genetic resources for vegetable breeding. International Seed Federation, World Seed Congress, Belfast, 31 May 2011Google Scholar
  123. Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol 34:582–582.  https://doi.org/10.1038/nbt0616-582CrossRefPubMedGoogle Scholar
  124. Whelan AI, Lema MA (2015) Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops& Food 6(4):253–265CrossRefGoogle Scholar
  125. Whelan AI, Lema MA (2017) A research program for the socioeconomic impacts of gene editing regulation. GM Crops Food 8:52–61.  https://doi.org/10.1080/21645698.2016.1271856CrossRefGoogle Scholar
  126. WIPO (2017) What is a Patent? World Intellectual Property Organization. http://www.wipo.int/patents/en/. Accessed Jan 2017
  127. WIPO (2018a) WIPO Intergovernmental Committee on Intellectual Property and Genetic Resources, Traditional Knowledge and Folklore. https://www.wipo.int/tk/en/igc/index.html
  128. WIPO (2018b) Genetic resources. WIPO Intergovernmental Committee on Intellectual Property and Genetic Resources, Traditional Knowledge and Folklore. https://www.wipo.int/tk/en/genetic/
  129. Wolt JD, Wang K, Yang B (2016) The regulatory status of genome- edited crops. Plant Biotechnol J 14(2):510–518; PMID: 26251102.  https://doi.org/10.1111/pbi.12444CrossRefPubMedGoogle Scholar
  130. WTO (2018) International statement on agricultural applications of precision biotechnology. Communication from Argentina, Australia, Brazil, Canada, the Dominican Republic, Guatemala, Honduras, Paraguay, the United States of America and UruguayGoogle Scholar
  131. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771.  https://doi.org/10.1016/j.cell.2015.09.038CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Intellectual Property CentreAustral UniversityBuenos AiresArgentina

Personalised recommendations