Advertisement

Post-Malthusian Dilemmas in Agriculture 4.0

  • Miguel Angel Rapela
Chapter

Abstract

This chapter contains an exhaustive description of the changes that occurred in the steps of agriculture 1.0, 2.0, 3.0 to 4.0, and the general claim of the work, which is, that “Agriculture 4.0” requires adhering to a different regulatory paradigm. An analysis is presented showing that the current network of separate sums of regulatory treaties is not the adequate tool that can answer to the demand of this new scenario.

Keywords

Agriculture 4.0 International treaties TRIPs Convention on biological diversity Traditional knowledge Productive increment of crops Innovation Rate Malthus Boserup 

References

  1. Adam U (2016) Farming 4.0′ at the farm gates. CEMA European Agriculture Machinery. Updated, July 30, 2016Google Scholar
  2. Ainsworth C (2015) Agriculture: a new breed of edits. Nature 528:S15–S16.  https://doi.org/10.1038/528S15aCrossRefPubMedGoogle Scholar
  3. Bass K (2015) The battle over plant genetic resources: interpreting the international treaty for plant genetic resources. Chic J Int Law 16(1):Article 7. Available at: http://chicagounbound.uchicago.edu/cjil/vol16/iss1/7Google Scholar
  4. Benton TG (2017) Food security. In: Thomas B, Murray BG, Murphy D (eds) Encyclopedia of applied plant sciences, 2nd ed. volume 2, Breeding genetics and biotechnology. Elsevier, Academic Press, pp 19–22CrossRefGoogle Scholar
  5. Bhatti S (2016) Use it or lose it: the international treaty provides access to key plant breeding material. European Seed 3(4):19–22Google Scholar
  6. Bisang R, Anlló G, Campi M (2008) Una revolución (no tan) silenciosa. Claves para repensar el agro en Argentina. Desarrollo Económico 48:165–207Google Scholar
  7. Borlaug N (2007) Prologue. In: Krattiger A, Mahoney RT, Nelsen L, Thomson JA, Bennett AB, Satyanarayana K, Graff GD, Fernandez C, Kowalski SP (eds) Intellectual property management in health and agricultural innovation: a handbook of best practices. MIHR/PIPRA, Oxford/Davis. Available online at www.ipHandbook.orgGoogle Scholar
  8. Boserup E (1965) The conditions of agricultural growth: the economics of agrarian change under population pressure. Allen & Unwin, London. Reprinted as: Boserup, Esther (2005) The conditions of agricultural growth: the economics of agrarian change under population pressure. New Brunswick, New JerseyGoogle Scholar
  9. Boyle J (2003) The second enclosure movement and the construction of the public domain. Law Contemp Probl 66:33–74. http://creativecommons.org/licenses/by-sa/1.0. It is also available at http://www.law.duke.edu/journals/66LCPBoyleGoogle Scholar
  10. Bragdon S (ed) (2004) International law of relevance to plant genetic resources: a practical review for scientists and other professionals working with plant genetic resources. Issues in genetic resources, no 10, march 2004. International Plant Genetic Resources Institute, RomeGoogle Scholar
  11. Campi M (2013) Tecnología y desarrollo agrario. In: Anllo G, Bisang R, Campi M (eds) Claves para repensar el agro en la Argentina. Buenos Aires, Eudeba, pp 97–152Google Scholar
  12. Campi M, Dueñas M (2015) Intellectual property rights and international trade of agricultural products. World Dev 80:1–18CrossRefGoogle Scholar
  13. Cassman KG, Dobermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour 28(1):315–358CrossRefGoogle Scholar
  14. Easterbrook G (2004) The progress paradox: how life gets better while people feel worse. Random House Trade Paperback EditionGoogle Scholar
  15. FAO (2009) Global agriculture towards 2050. FAO, RomeGoogle Scholar
  16. Fitzgerald T (2016) The impact of climate change on agricultural crops. In: Edwards D, Batley J (eds) Plant genomics and climate change, pp 1–14Google Scholar
  17. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS (2011) Solutions for a cultivated planet. Nature 478:337–342CrossRefGoogle Scholar
  18. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Dl L (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818CrossRefGoogle Scholar
  19. Gould J (with infographic by Ashour M) (2017) A world of insecurity. Nature 544:6–7CrossRefGoogle Scholar
  20. Hein T (2018) No access, no benefits – part 3 – the view from academia. European Seed, posted on December 12th, 2018 by Treena Hein. International News, Regulatory. 5(4). https://european-seed.com/2018/12/no-access-no-benefits-part-3-the-view-from-academia/
  21. Hodson R (2017) Food security. Nature 544:5CrossRefGoogle Scholar
  22. ICT (2015) Agriculture 4.0 The Internet of things boosting regional innovation. Networking Sessions Programme. Innovate, Connect, Transform, European Commission. ICT 2015, 20 to 22 October, Lisbon, PortugalGoogle Scholar
  23. Kariyawasam K, Tsai M (2018) Access to genetic resources and benefit sharing – implications of Nagoya protocol on providers and users. J World Intellect Prop 21(5–6):289–305CrossRefGoogle Scholar
  24. Kock M (2013) Adapting IP to an evolving agricultural innovation landscape. WIPO Magazine. http://www.wipo.int/wipo_magazine/en/2013/02/article_0007.htmlGoogle Scholar
  25. Kuhn TS (1962) The structure of scientific revolutions. Chicago, IL: University of Chicago PressGoogle Scholar
  26. Liu et al (62 authors) (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Chang 6:1130–1136CrossRefGoogle Scholar
  27. Malthus R (1798) An Essay on the Principle of Population, as it Affects the Future Improvement of Society with Remarks on the Speculations of Mr. Godwin, M. Condorcet, and Other Writers. London Printed for J. Johnson, in St. Paul’s Church-YardGoogle Scholar
  28. Massot JM (2016) Biotecnología, desarrollo económico e inserción internacional. Dos propuestas para el caso argentino. Agenda Internacional 36:56–68Google Scholar
  29. NAP (2017) Advancing concepts and models for measuring innovation: proceedings of a workshop. National Academies of Sciences, Engineering, and Medicine. The National Academies Press, Washington DC.  https://doi.org/10.17226/23640CrossRefGoogle Scholar
  30. Noriega IL, Halewood M, Galluzzi G, Vernooy R, Bertacchini E, Gauchan D, Welch E (2013) How policies affect the use of plant genetic resources: the experience of the CGIAR. Resources 2:231–269CrossRefGoogle Scholar
  31. OECD/FAO (2012) OECD-FAO agricultural outlook 2012–2021. OECD Publishing and FAO Rome.  https://doi.org/10.1787/agr_outlook-2012-en
  32. Ouma M (2017) Traditional knowledge: the challenges facing international lawmakers. WIPO Magazine, February 2017. This article is based on the keynote address by Dr. Ouma at the WIPO Seminar on Intellectual Property and Traditional Knowledge in Geneva, Switzerland, in November 2016Google Scholar
  33. Phillips PWB (2017) Ownership of plant genetic resources. In: Thomas B, Murray BG, Murphy D (eds) Encyclopedia of applied plant sciences, 2nd ed, Vol 2, Breeding genetics and biotechnology. Washington, DC. Elsevier, Academic Press, p 28Google Scholar
  34. Pingali P (2006) Westernization of Asian diets and the transformation of food systems: implications for research and policy. Food Policy 32:281–298CrossRefGoogle Scholar
  35. Pinker S (2011) The better angels of our nature: why violence has declined. Viking, New York. ISBN 9780670022953Google Scholar
  36. Prathapan D, Pethiyagoda R, Bawa KS, Raven PH, Rajan PD and 172 co-signatories from 35 countries (2018) When the cure kills: CBD limits biodiversity research. Science 360 (6396): 1405–1406Google Scholar
  37. Prescott-Allen R, Prescott-Allen C (1990) How many plants feed the world? Conserv Biol 4(4):365–374CrossRefGoogle Scholar
  38. Rapela MA (2000) Derechos de propiedad intelectual en vegetales superiores. Editorial Ciudad Argentina, Buenos Aires, 466 pagesGoogle Scholar
  39. Rapela MA (2007) Schemes for intellectual property. Seed News Magazine 11(1):20–23Google Scholar
  40. Rapela MA (2012) Post-transgénesis: nuevas técnicas de mejoramiento vegetal. AGRONEXO, Revista de la Asociación de Ingenieros Agrónomos de Uruguay 1(3):8–9Google Scholar
  41. Rapela MA (2014a) La era post transgénicia y el desafío de las nuevas técnicas de mejoramiento. Actas del Seminario organizado por el Instituto de Genética “Ewald Favret” del INTA Castelar en conmemoración del 45 Aniversario de la Sociedad Argentina de Genética y los 50 años de la creación del híbrido de maíz forrajero. Castelar, 5 de diciembre 2014Google Scholar
  42. Rapela MA (2014b) Post-transgenesis: new plant breeding techniques. Seed News Magazine 18:14–15Google Scholar
  43. Rapela MA (2015) The adoption of conventions and treaties related to genetic resources and intellectual property issues: current situation and status in the SAA region. Conference at the 5th Congress of the Seed Association of the Americas. Cancún, México, September 10th, 2015Google Scholar
  44. Rapela MA (2018a) Gene editing and CRISPR-Cas. Seed News Magazine 22:12–16Google Scholar
  45. Rapela MA (2018b) Metodología de CRISPR, aspectos legales y regulatorios. Actas XI Congreso Nacional de Maíz, Mesa de Genética y Mejoramiento Genético Vegetal, pp 266–270Google Scholar
  46. Rapela MA (2018c) Edición Génica mediante sistemas CRISPR/Cas. AGROPOST CPIA-Consejo Profesional de Ingeniería Agronómica 155(abril-mayo):11–13Google Scholar
  47. Rapela MA, Levitus G (2014) Novas técnicas do melhoramento. In: Anuario da ABRASEM. Associação Brasileira de Sementes e Mudas, pp 29–32Google Scholar
  48. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428.  https://doi.org/10.1371/journal.pone.0066428CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun.  https://doi.org/10.1038/ncomms6989
  50. Ruiz Muller M (2015) Genetic resources as natural information: implications for the convention on biological diversity and Nagota protocol. Taylor & Francis Ltd, London, 170 pagesGoogle Scholar
  51. Ruiz Muller M, Caillaux Zazzali J (2014) Propiedad Intelectual y acceso a Recursos Gnéticos en un ambiente altamente politizado y “desinformado”. Anuario Andino de Derechos Intelectuales 10(10):317–332Google Scholar
  52. Ruiz Muller M, Henry Vogel J, Zamudio T (2010) La lógica debe prevalecer: un nuevo marco teórico y operativo para el Régimen Internacional de Acceso a RGV y Distribución Justa y Equitativa de Beneficios. Documentos de Investigación 5(13). http://www.spda.org.pe
  53. SINGER (2016) Data base of the System-Wide Information Network for Genetic resources (SINGER) Accessed, September 2016 at http://www.singer.cgiar.org
  54. Srinivas KR (2010) Population and demographic change. In: Spring, Ursula Oswald, Ada Aharoni, Ralph V. Summy, and Robert Charles Eliot (eds). Peace studies, public policy and global security, Volume VI, p 38Google Scholar
  55. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264CrossRefGoogle Scholar
  56. Trigo E (2016) Potential productivity increases in the Argentine agri-food production. Publication of the “Grupo de Productores del Sur”, GPSGoogle Scholar
  57. United Nations, Department of Economic and Social Affairs (2016). Population Division, Population Estimates and Projections Section. Accessed June 2016 at: http://esa.un.org/unpd/wpp/index.htm
  58. United Nations, Department of Economic and Social Affairs, Population Division (2015) World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Intellectual Property CentreAustral UniversityBuenos AiresArgentina

Personalised recommendations