Skip to main content

DeepMCDose: A Deep Learning Method for Efficient Monte Carlo Beamlet Dose Calculation by Predictive Denoising in MR-Guided Radiotherapy

  • Conference paper
  • First Online:
Artificial Intelligence in Radiation Therapy (AIRT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11850))

Included in the following conference series:

Abstract

The next great leap toward improving treatment of cancer with radiation will require the combined use of online adaptive and magnetic resonance guided radiation therapy techniques with automatic X-ray beam orientation selection. Unfortunately, by uniting these advancements, we are met with a substantial expansion in the required dose information and consequential increase to the overall computational time imposed during radiation treatment planning, which cannot be handled by existing techniques for accelerating Monte Carlo dose calculation. We propose a deep convolutional neural network approach that unlocks new levels of acceleration and accuracy with regards to post-processed Monte Carlo dose results by relying on data-driven learned representations of low-level beamlet dose distributions instead of more limited filter-based denoising techniques that only utilize the information in a single dose input. Our method uses parallel U-Net branches acting on three input channels before mixing latent understanding to produce noise-free dose predictions. Our model achieves a normalized mean absolute error of only 0.106% compared with the ground truth dose contrasting the 25.7% error of the under sampled MC dose fed into the network at prediction time. Our model’s per-beamlet prediction time is ~220 ms, including Monte Carlo simulation and network prediction, with substantial additional acceleration expected from batched processing and combination with existing Monte Carlo acceleration techniques. Our method shows promise toward enabling clinical practice of advanced treatment technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Q., Chen, M., Lu, W.: Ultrafast convolution/superposition using tabulated and exponential kernels on GPU. Med. Phys. 38(3), 1150–1161 (2011). https://doi.org/10.1118/1.3551996

    Article  Google Scholar 

  2. Neylon, J., et al.: A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures. Med. Phys. 41(10), 101711 (2014). https://doi.org/10.1118/1.4895822

    Article  Google Scholar 

  3. Neph, R., Ouyang, C., Neylon, J., Yang, Y.M., Sheng, K.: Parallel beamlet dose calculation via beamlet contexts in a distributed Multi-GPU Framework. Med. Phys. (2019). https://doi.org/10.1002/mp.13651

  4. Deasy, J.O., Wickerhauser, M.V., Picard, M.: Accelerating Monte Carlo simulations of radiation therapy dose distributions using wavelet threshold de-noising. Med. Phys. 29(10), 2366–2373 (2002). https://doi.org/10.1118/1.1508112

    Article  Google Scholar 

  5. Kawrakow, I.: On the de-noising of Monte Carlo calculated dose distributions. Phys. Med. Biol. 47(17), 304 (2002). https://doi.org/10.1088/0031-9155/47/17/304

    Article  Google Scholar 

  6. Fippel, M., Nüsslin, F.: Smoothing Monte Carlo calculated dose distributions by iterative reduction of noise. Phys. Med. Biol. 48(10), 1289–1304 (2003). https://doi.org/10.1088/0031-9155/48/10/304

    Article  Google Scholar 

  7. Miao, B., Jeraj, R., Bao, S., Mackie, T.R.: Adaptive anisotropic diffusion filtering of Monte Carlo dose distributions. Phys. Med. Biol. 48(17), 2767–2781 (2003). https://doi.org/10.1088/0031-9155/48/17/303

    Article  Google Scholar 

  8. El Naqa, I., Deasy, J.O., Vicic, M.: Locally adaptive denoising of Monte Carlo dose distributions via hybrid median filtering. In: IEEE Nuclear Science Symposium, pp. 2703–2706 (2003). ISBN 0-7803-8257-9

    Google Scholar 

  9. El Naqa, I., et al.: A comparison of Monte Carlo dose calculation denoising techniques. Phys. Med. Biol. 50(5), 909–922 (2005). https://doi.org/10.1088/0031-9155/50/5/014

    Article  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Agostinelli, S., et al.: GEANT4—a simulation toolkit. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  12. Allison, J., et al.: Recent developments in GEANT4. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835, 186–225 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  Google Scholar 

  13. Low, D.A., Harms, W.B., Mutic, S., Purdy, J.A.: A technique for the quantitative evaluation of dose distributions. Med. Phys. 25(5), 656–661 (1998). https://doi.org/10.1118/1.598248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Neph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neph, R., Huang, Y., Yang, Y., Sheng, K. (2019). DeepMCDose: A Deep Learning Method for Efficient Monte Carlo Beamlet Dose Calculation by Predictive Denoising in MR-Guided Radiotherapy. In: Nguyen, D., Xing, L., Jiang, S. (eds) Artificial Intelligence in Radiation Therapy. AIRT 2019. Lecture Notes in Computer Science(), vol 11850. Springer, Cham. https://doi.org/10.1007/978-3-030-32486-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32486-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32485-8

  • Online ISBN: 978-3-030-32486-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics