Evaluation of the Performance of Message Routing Protocols in Delay Tolerant Networks (DTN) in Colombian Scenario

  • Nazhir Amaya-Tejera
  • Farid Meléndez-PertuzEmail author
  • Rubén Sánchez-Dams
  • José Simancas-García
  • Iván Ruiz
  • Hermes Castellanos
  • Fredy A. Sanz
  • César A. Cárdenas R
  • Carlos Collazos-Morales
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1051)


Certain vehicles need to send information to their monitoring stations constantly, this information is usually sent by the vehicles, through the cellular network. The use of these wireless networks depends on coverage that it is not usually available in all geographic areas. This is the case of road segments where the coverage of data service of cellular networks is partial or zero, making transmission impossible. A particular case is the roads between the municipality of Juan de Acosta and the city of Barranquilla in Atlántico department (Colombia). As a solution, Delay-Tolerant Networks (DTN) emerge, which allow the transmission of data to the monitoring stations when there is no cellular network coverage. In this work, a simulated evaluation of the performance of some message routing protocols for DTN is performed, in the Juan de Acosta – Barranquilla scenario. Using “The Opportunistic Networking Environment”, we determined the performance of these message routing protocols. The results show that the first contact message routing protocol, presents the highest rate of delivery messages (delivery rate) and the lowest delivery latency (delivery latency). In addition, the Spray and Wait protocol presents better results in System message overload (overhead) than the first one. The Opportunistic Networking Environment simulator, the performance of these message routing protocols was determined in this scenario. The results show that the Firstcontact message routing protocol presents the highest rate of delivery (deliveryrate) and the lowest delivery delay (deliverylatency). In addition, the Spray and Wait protocol has a better result in system overhead than the first one.


Routing protocols Delay Tolerant Networks (DTN) Direct delivery Epidemic First contact Spray and wait 


  1. 1.
    Tanenbaum, A.S., Wetherall, D.J.: Redes De Computadoras (2012)Google Scholar
  2. 2.
    Socolofsky, T.J., Kale, C.J.: TCP/IP tutorial. RFC Editor (1991)Google Scholar
  3. 3.
    Warthman, F., et al.: Delay-and Disruption-Tolerant Networks (DTNs). A Tutorial. V.. 0, Interplanetary Internet Special Interest Group, pp. 5–9 (2012)Google Scholar
  4. 4.
    Rodrigues, J.J.P.C., Soares, V.N.G.J.: An introduction to delay and disruption-tolerant networks (DTNs). In: Advances in Delay-Tolerant Networks, pp. 1–21. Elsevier (2015)Google Scholar
  5. 5.
    Soares, V.N.G.J., Farahmand, F., Rodrigues, J.J.P.C.: A layered architecture for vehicular delay-tolerant networks. In: Proceedings - IEEE Symposium on Computers and Communications, pp. 122–127 (2009)Google Scholar
  6. 6.
    Montoya, F.G., Gómez, J., Cama, A., Zapata-sierra, A., Martínez, F., Luis, J., et al.: A monitoring system for intensive agriculture based on mesh networks and the android system. Comput. Electron. Agric. 99, 14–20 (2013)CrossRefGoogle Scholar
  7. 7.
    Paula, M.C.G., Isento, J.N., Dias, J.A., Rodrigues, J.J.P.C.: A real-world VDTN testbed for advanced vehicular services and applications. In: 2011 IEEE 16th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, CAMAD 2011, pp. 16–20 (2011)Google Scholar
  8. 8.
    Dias, J.A., Isento, J.N., Soares, V.N.G.J., Rodrigues, J.J.P.C.: Impact of scheduling and dropping policies on the performance of vehicular delay-tolerant networks. In: IEEE International Conference on Communications (2011)Google Scholar
  9. 9.
    Balasubramanian, A., Levine, B., Venkataramani, A.: DTN routing as a resource allocation problem. ACM SIGCOMM Comput. Commun. Rev. 37(4), 373 (2007)CrossRefGoogle Scholar
  10. 10.
    Keränen, A., Ott, J., Kärkkäinen, T.: The ONE simulator for DTN protocol evaluation. In: Proceedings of the Second International ICST Conference on Simulation Tools and Techniques (2009)Google Scholar
  11. 11.
    Chenji, H., Stoleru, R.: Delay-tolerant networks (DTNs) for emergency communications. In: Advances in Delay-Tolerant Networks, pp. 105–136. Elsevier (2015)Google Scholar
  12. 12.
    Martínez, S., Director, T., Manzoni Director, P., Vicente, C.G., Tornell, S.M.: Diseño de un protocolo para redes tolerantes a retardos: RTaDAP (2011)Google Scholar
  13. 13.
    Honda, T., Ishikawa, S., Ikeda, M., Barolli, L.: A message suppression method for vehicular delay tolerant networking. In: Proceedings of the 2014 9th International Conference on Broadband and Wireless Computing, Communication and Applications, BWCCA 2014, pp. 351–356 (2014)Google Scholar
  14. 14.
    Ishikawa, S., Honda, T., Ikeda, M., Barolli, L.: Investigation of message suppression method considering TCP in vehicular-DTN. In: Proceedings of the IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, WAINA 2015, pp. 370–375 (2015)Google Scholar
  15. 15.
    Robles, D.G.: Evaluación de algoritmos de propagación de mensajes en redes oportunistas, Universitat Politècnica de Catalunya (2013)Google Scholar
  16. 16.
    Spaho, E., Barolli, L., Kolici, V., Lala, A.: Performance evaluation of different routing protocols in a vehicular delay tolerant network. In: 2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA), pp. 157–162 (2015)Google Scholar
  17. 17.
    Abdelkader, T., Naik, K., Nayak, A., Goel, N., Srivastava, V.: A performance comparison of delay-tolerant network routing protocols. IEEE Netw. 30(2), 46–53 (2016)CrossRefGoogle Scholar
  18. 18.
    Páez Bencomo, M.I.: Análisis y evaluación de prestaciones de protocolos de encaminamiento en Redes Tolerante al Retardo, Universidad Politécnica de Madrid (2013)Google Scholar
  19. 19.
    Chakrabarti, C.: A dynamic two hops reputation assignment scheme for selfish node detection and avoidance in delay tolerant network. In: 2015 IEEE International Conference on Research in Computational Intelligence and Comunication Network, pp. 345–350 (n.d.)Google Scholar
  20. 20.
    Uddin, Y.S., Nicol, D.M., Abdelzaher, T.F., Kravets, R.H.: A post-disaster mobility model for delay tolerant networking. In: Proceedings of the Winter Simulation Conference, pp. 2785–2796 (2009)Google Scholar
  21. 21.
    Chen, H., Lou, W.: Contact expectation based routing for delay tolerant networks. Ad Hoc Netw. 36, 244–257 (2016)CrossRefGoogle Scholar
  22. 22.
    Caini, C.: Delay-tolerant networks (DTNs) for satellite communications. In: Advances in Delay-Tolerant Networks, pp. 25–47. Elsevier (2015)Google Scholar
  23. 23.
    Clarke, N.L., Ghita, B.V., Furnell, S.M.: Delay-tolerant networks (DTNs) for deep-space communications. In: Advances in Delay-Tolerant Networks, pp. 49–60. Elsevier (2015)Google Scholar
  24. 24.
    Rahman, R.H., Frater, M.R.: Delay-tolerant networks (DTNs) for underwater communications. In: Advances in Delay-Tolerant Networks, pp. 81–103. Elsevier (2015)Google Scholar
  25. 25.
    Soares, V.N.G.J., Rodrigues, J.J.P.C.: Vehicular delay-tolerant networks (VDTNs). In: Advances in Delay-Tolerant Networks, pp. 61–80. Elsevier (2015)Google Scholar
  26. 26.
    Amah, T.E., Kamat, M., Moreira, W., Abu Bakar, K., Mandala, S., Batista, M.A.: Towards next-generation routing protocols for pocket switched networks. J. Netw. Comput. Appl. 70, 51–88 (2016)CrossRefGoogle Scholar
  27. 27.
    Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Technical report Number CS-200006, Duke University (CS-200006), pp. 1–14 (2000)Google Scholar
  28. 28.
    Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and wait : an efficient routing scheme for intermittently connected mobile networks. In: SIGCOMM, pp. 252–259 (2005)Google Scholar
  29. 29.
    Meléndez, F., Vélez, J., Caicedo, J.: Modelado y prueba de desempeño en tasa de errores de bits de un sistema de comunicaciones con modulación QAM y codificación Reed-Solomon utilizando LabVIEW para la enseñanza en pre… Revista Técnica de La Facultad de Ingeniería 40(3) (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nazhir Amaya-Tejera
    • 1
  • Farid Meléndez-Pertuz
    • 1
    Email author
  • Rubén Sánchez-Dams
    • 2
  • José Simancas-García
    • 1
  • Iván Ruiz
    • 3
  • Hermes Castellanos
    • 3
  • Fredy A. Sanz
    • 3
  • César A. Cárdenas R
    • 3
  • Carlos Collazos-Morales
    • 3
  1. 1.Departamento de Ciencias de la Computación y ElectrónicaUniversidad de la CostaBarranquillaColombia
  2. 2.Facultad de MinasUniversidad Nacional de ColombiaMedellinColombia
  3. 3.Vicerrectoría de InvestigacionesUniversidad Manuela BeltránBogotáColombia

Personalised recommendations