Advertisement

Capacity of Desktop Clouds for Running HPC Applications: A Revisited Analysis

  • Jaime ChavarriagaEmail author
  • Carlos E. Gómez
  • David C. Bonilla
  • Harold E. Castro
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1051)

Abstract

Desktop Clouds, such as UnaCloud and CernVM, run scientific applications on desktop computers installed in computer laboratories and offices. These applications run on virtual machines using the idle capacities of that desktops and networks. While some universities use desktop clouds to run bag of tasks (BoT), we have used these platforms to run High Performance Computing (HPC) applications that require coordination among the nodes and are sensible to communication delays. There, although a virtual machine with 4 virtual cores on computers released in 2012 may achieve more than 40 GFLOPs, the capacity of clusters with tens or hundreds of virtual machines cannot be determined by multiplying this value. In a previous work, we studied the capacity of desktop clouds for running applications non-intensive on communications on our computer labs. This paper presents a revisited analysis, focused on the capacity of desktop clouds for running HPC applications. The resulting information can be used for researchers deciding on investing on HPC clusters or using existing computer labs for running their applications, and those interested on designing desktop clusters that may achieve the maximum possible capacity.

Keywords

Desktop clouds LINPACK Computing capacity 

References

  1. 1.
    Alwabel, A., Walters, R.J., Wills, G.B.: A view at desktop clouds. In: International Workshop on Emerging Software as a Service and Analytics (ESaaSA 2014), Barcelona, Spain, pp. 55–61. ScitePress (2014)Google Scholar
  2. 2.
    Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10. IEEE Computer Society (2004)Google Scholar
  3. 3.
    Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa, M.: Volunteer computing and desktop cloud: The Cloud@Home paradigm. In: Eighth IEEE International Symposium on Network Computing and Applications (NCA 2009), Cambridge, MA, USA, pp. 134–139. IEEE (2009)Google Scholar
  4. 4.
    Domingues, P., Marques, P., Silva, L.: Resource usage of windows computer laboratories. In: 2005 International Conference on Parallel Processing Workshops (ICPPW 2005), Oslo, Norway, pp. 469–476. IEEE, June 2005Google Scholar
  5. 5.
    Garcés, N., et al.: Analysis of Gromacs MPI using the opportunistic cloud infrastructure UnaCloud. In: Sixth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS 2012), pp. 1001–1006 (2012)Google Scholar
  6. 6.
    Garcés, N., Sotelo, G., Villamizar, M., Castro, H.: Running MPI Applications over Opportunistic Cloud Infrastructures. In: 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Victoria, BC, Canada, pp. 309–314. IEEE (2012)Google Scholar
  7. 7.
    Gómez, C.E., Díaz, C.O., Forero, C.A., Rosales, E., Castro, H.: Determining the real capacity of a desktop cloud. In: Osthoff, C., Navaux, P.O.A., Barrios Hernandez, C.J., Silva Dias, P.L. (eds.) CARLA 2015. CCIS, vol. 565, pp. 62–72. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26928-3_5CrossRefGoogle Scholar
  8. 8.
    Gómez, C.E., Chavarriaga, J., Bonilla, D.C., Castro, H.E.: Global snapshot file tracker. In: Florez, H., Diaz, C., Chavarriaga, J. (eds.) ICAI 2018. CCIS, vol. 942, pp. 90–104. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01535-0_7CrossRefGoogle Scholar
  9. 9.
    Gómez, C.E., Chavarriaga, J., Castro, H.E.: Fault characterization and mitigation strategies in desktop cloud systems. In: Meneses, E., Castro, H., Barrios Hernández, C.J., Ramos-Pollan, R. (eds.) CARLA 2018. CCIS, vol. 979, pp. 322–335. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-16205-4_24CrossRefGoogle Scholar
  10. 10.
    He, Q., Zhou, S., Kobler, B., Duffy, D., McGlynn, T.: Case study for running HPC applications in public clouds. In: 19th ACM International Symposium on High Performance Distributed Computing (HPDC 2010), Chicago, Illinois, pp. 395–401. ACM (2010)Google Scholar
  11. 11.
    Litzkow, M.J., Livny, M., Mutka, M.W.: Condor-a hunter of idle workstations. In: 8th International Conference on Distributed Computing Systems, pp. 104–111. IEEE (1988)Google Scholar
  12. 12.
    Marosi, A., Kovács, J., Kacsuk, P.: Towards a volunteer cloud system. Futur. Gener. Comput. Syst. 29(6), 1442–1451 (2013)CrossRefGoogle Scholar
  13. 13.
    Mengistu, T.M., Alahmadi, A.M., Alsenani, Y., Albuali, A., Che, D.: cuCloud: Volunteer Computing as a Service (VCaaS) system. In: Luo, M., Zhang, L.-J. (eds.) CLOUD 2018. LNCS, vol. 10967, pp. 251–264. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94295-7_17CrossRefGoogle Scholar
  14. 14.
    Mohammadi, M., Bazhirov, T.: Comparative benchmarking of cloud computing vendors with high performance linpack. In: 2nd International Conference on High Performance Compilation, Computing and Communications (HP3C), pp. 1–5. ACM (2018)Google Scholar
  15. 15.
    Napper, J., Bientinesi, P.: Can cloud computing reach the top500? In: Proceedings of the Combined Workshops on UnConventional High Performance Computing Workshop Plus Memory Access Workshop (UCHPC-MAW 2009), pp. 17–20. ACM (2009)Google Scholar
  16. 16.
    Oviedo, A.: UnaCloud MSA: Plataforma basada en UnaCloud para la generación y análisis de alineamientos múltiples de secuencias. Master’s thesis, School of Systems and Computing Engineering (2011)Google Scholar
  17. 17.
    Rosales, E., Castro, H., Villamizar, M.: UnaCloud: opportunistic cloud computing infrastructure as a service. In: Second International Conferences on Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING 2011), pp. 187–194. ThinkMind (2011)Google Scholar
  18. 18.
    Ryu, K.D.: Exploiting idle cycles in networks of workstations. Ph.D. thesis, University of Maryland, College Park (2001)Google Scholar
  19. 19.
    Segal, B., et al.: LHC cloud computing with CernVM. In: 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2010), Jaipur, India, p. 004. PoS (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Systems and Computing Engineering DepartmentUniversidad de los AndesBogotáColombia
  2. 2.Universidad del QuindíoArmeniaColombia

Personalised recommendations