Advertisement

Hyperthermia Study in Breast Cancer Treatment Using a New Applicator

  • H. F. Guarnizo MendezEmail author
  • M. A. Polochè Arango
  • J. F. Coronel Rico
  • T. A. Rubiano Suazo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1051)

Abstract

A study about effects obtained by implementing an electromagnetic hyperthermia (EM) treatment model are presented. The study focus is the breast cancer treatment; this study is perform using an electromagnetic simulation model. A breast was modeled using the conductivity and permittivity of tissues such as fat, skin, lobules and muscle. The distribution of the power density was analyzed for two cases, first the applicator is not aligned with the tumor; second the applicator is aligned with the applicator. The distribution of the power density was analyzed inside the breast model when it was irradiated with two applicators at 2.45 GHz and 5 GHz. The second applicator proposed it is a new prototype of applicator developed in the Groove Gap Waveguide technology (GGW). The power density obtained in lobes, tumor and fat is compared and it was observed that tissues overheating that are close to the tumor can be avoided by optimizing the applicator location. The preliminary results indicate that with the new prototype of applicator developed in the Groove Gap Waveguide technology (GGW) is possible to focus the EM energy. Moreover, the tissues close to the tumor obtain a lower concentration of power density.

Keywords

Heat flow Hyperthermia Radiation Applicator Groove gap waveguide Tissues 

References

  1. 1.
    Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D.: Global cancer statistics. Ca-Cancer J. Clin. 61(2), 69–90 (2011)CrossRefGoogle Scholar
  2. 2.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)CrossRefGoogle Scholar
  3. 3.
    Naz, S., Shahzad, H., Ali, A., Zia, M.: Nanomaterials as nanocarriers: a critical assessment why these are multi-chore vanquisher in breast cancer treatment. Artif. Cells, Nanomedicine Biotechnol. 46(5), 899–916 (2018)CrossRefGoogle Scholar
  4. 4.
    Chalakur-Ramireddy, N.K.R., Pakala, S.B.: Combined drug therapeutic strategies for the effective treatment of Triple Negative. Breast Cancer 38(1), BSR20171357 (2018)Google Scholar
  5. 5.
    Lee, T.H., Bu, J., Kim, B.H., Poellmann, M.J., Hong, S., Hyun, S.H.: Sub-lethal hyperthermia promotes epithelial-to-mesenchymal-like transition of breast cancer cells: implication of the synergy between hyperthermia and chemotherapy. RSC Adv. 9(1), 52–57 (2019)CrossRefGoogle Scholar
  6. 6.
    Chicheł, A., Skowronek, J., Kubaszewska, M., Kanikowski, M.: Hyperthermia - description of a method and a review of clinical applications. Rep. Pract. Oncol. Radiother. 12(5), 267–275 (2007)CrossRefGoogle Scholar
  7. 7.
    Nguyen, P.T., Abbosh, A.M.: Focusing techniques in breast cancer treatment using non-invasive microwave hyperthermia. ISAP 2015, 1–3 (2015)Google Scholar
  8. 8.
    Iero, D.A.M., Crocco, L., Isernia, T., Korkmaz, E.: Optimal focused electromagnetic hyperthermia treatment of breast cancer, In: 2016 10th European Conference Antennas Propagation, EuCAP 2016, pp. 1–2 (2016)Google Scholar
  9. 9.
    Merunka, I., Fiser, O., Vojackova, L., Vrba, J., Vrba, D.: Utilization potential of balanced antipodal Vivaldi antenna for microwave hyperthermia treatment of breast cancer. In: 8th European Conference Antennas Propagation, EuCAP 2014, vol. 6, no. EuCAP, pp. 706–710 (2014)Google Scholar
  10. 10.
    El, J., et al.: Thermochemoradiotherapy improves oxygenation in locally advanced breast cancer. Clin. Cancer Res. 10(13), 4287–4293 (2004)CrossRefGoogle Scholar
  11. 11.
    Vujaskovic, Z., et al.: A phase I/II study of neoadjuvant liposomal doxorubicin, paclitaxel, and hyperthermia in locally advanced breast cancer. Int. J. Hyperth. 26(5), 514–521 (2010)CrossRefGoogle Scholar
  12. 12.
    Refaat, T., et al.: Hyperthermia and radiation therapy for locally advanced or recurrent breast cancer. Breast 24(4), 418–425 (2015)CrossRefGoogle Scholar
  13. 13.
    Nguyen, P.T., Abbosh, A., Crozier, S.: Microwave hyperthermia for breast cancer treatment using electromagnetic and thermal focusing tested on realistic breast models and antenna arrays. IEEE Trans. Antennas Propag. 63(10), 4426–4434 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kampinga, H.H.: Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperth. 22(3), 191–196 (2006)CrossRefGoogle Scholar
  15. 15.
    Ghaleh, H.E.G., Zarei, L., Motlagh, B.M., Jabbari, N.: Using CuO nanoparticles and hyperthermia in radiotherapy of MCF-7 cell line: synergistic effect in cancer therapy. Artif. Cells Nanomed. Biotechnol. 47(1), 1396–1403 (2019)CrossRefGoogle Scholar
  16. 16.
    Hurwitz, M., Stauffer, P.: Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care. Semin. Oncol. 41(6), 714–729 (2014)CrossRefGoogle Scholar
  17. 17.
    Kitamura, K., Sugimachi, K.: Thermo-radiotherapy combined with chemotherapy for Esophageal tumors. In: Thermoradiotherapy and Thermochemotherapy, 2nd edn., pp. 85–94 (1996)Google Scholar
  18. 18.
    Korkmaz, E., Isık, O., Sagkol, H.: A directive antenna array applicator for focused electromagnetic hyperthermia treatment of breast cancer. In: 2015 9th European Conference Antennas Propagation, vol. 1, pp. 1–4 (2015) Google Scholar
  19. 19.
    Chakaravarthi, G., Arunachalam, K.: Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia. Int. J. Hyperth. 31(7), 737–748 (2015)CrossRefGoogle Scholar
  20. 20.
    Curto, S., Ruvio, G., Ammann, M.J., Prakash, P.: A wearable applicator for microwave hyperthermia of breast cancer: performance evaluation with patient-specific anatomic models. In: Proceedings 2015 International Conference Electromagnetic Advance Application ICEAA 2015, pp. 1159–1162 (2015)Google Scholar
  21. 21.
    Merunka, I., Fiser, O., Vojackova, L., Vrba, J., Vrba, D.: Microwave hyperthermia treatment of neck cancer using eight UWB antennas. In: European Microwave Week 2014: Connecting the Future, EuMW 2014 - Conference Proceedings; EuMC 2014: 44th European Microwave Conference, pp. 790–793 (2014)Google Scholar
  22. 22.
    Li, J., Wang, X.: Comparison of two small circularly polarized antennas for focused microwave hyperthermia. In: 2019 13th European Conference Antennas Propagation, no. EuCAP, pp. 5–8 (2019)Google Scholar
  23. 23.
    Stang, J., Haynes, M., Carson, P., Moghaddam, M.: A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Trans. Biomed. Eng. 59(9), 2431–2438 (2012)CrossRefGoogle Scholar
  24. 24.
    Vrba, D., Vrba, J.: Applicators for local microwave hyperthermia based on metamaterial technology. In: 8th European Conference Antennas Propagation, EuCAP 2014, no. EuCAP, pp. 68–71 (2014)Google Scholar
  25. 25.
    Tao, Y., Wang, G.: Conformal hyperthermia of superficial tumor with left-handed metamaterial lens applicator. IEEE Trans. Biomed. Eng. 59(12), 3525–3530 (2012)CrossRefGoogle Scholar
  26. 26.
    Nguyen, P.T., Abbosh, A.M., Crozier, S.: Realistic simulation environment to test microwave hyperthermia treatment of breast cancer. In: IEEE Antennas Propagation Society AP-S International Symposium, pp. 1188–1189 (2014)Google Scholar
  27. 27.
    Guarnizo Mendez, H.F., Polochè Arango, M.A., Pantoja Acosta, J.J.: Hyperthermia Study in Breast Cancer Treatment. In: Figueroa-García, J.C., Villegas, J.G., Orozco-Arroyave, J.R., Maya Duque, P.A. (eds.) WEA 2018. CCIS, vol. 916, pp. 256–267. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00353-1_23CrossRefGoogle Scholar
  28. 28.
    Porter, E., Fakhoury, J., Oprisor, R., Coates, M., Popovic, M.: Improved tissue phantoms for experimental validation of microwave breast cancer detection. In: Antennas Propagation (EuCAP), 2010 Proceedings Fourth European Conference, pp. 1–5 (2010)Google Scholar
  29. 29.
    Nikita, K.S.: Handbook of Biomedical Telemetry, 1st edn. John Wiley & Sons Inc, Hoboken (2014)Google Scholar
  30. 30.
    Miklavčič, D., Hart, F.X.: Electric properties of tissues. Wiley Encycl. Biomed. Eng., 1–12 (2006) Google Scholar
  31. 31.
    Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41(11), 2251–2269 (1996)CrossRefGoogle Scholar
  32. 32.
    Bohórquez, J.C., et al.: Planar substrate integrated waveguide cavity-backed antenna. IEEE Antennas Wirel. Propag. Lett. 8, 1139–1142 (2009)CrossRefGoogle Scholar
  33. 33.
    Nawaz, M.I., Huiling, Z., Kashif, M.: Substrate integrated waveguide (SIW) to microstrip transition at X-Band. In: 2014 International Conference Circuits, System Control, pp. 61–63 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • H. F. Guarnizo Mendez
    • 1
    Email author
  • M. A. Polochè Arango
    • 2
  • J. F. Coronel Rico
    • 1
  • T. A. Rubiano Suazo
    • 1
  1. 1.Universidad El BosqueBogotáColombia
  2. 2.Universidad de San BuenaventuraBogotáColombia

Personalised recommendations