Predicting Stock Prices Using Dynamic LSTM Models

  • Duc Huu Dat NguyenEmail author
  • Loc Phuoc Tran
  • Vu Nguyen
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1051)


Predicting stock prices accurately is a key goal of investors in the stock market. Unfortunately, stock prices are constantly changing and affected by many factors, making the process of predicting them a challenging task. This paper describes a method to build models for predicting stock prices using long short-term memory network (LSTM). The LSTM-based model, which we call dynamic LSTM, is initially built and continuously retrained using newly augmented data to predict future stock prices. We evaluate the proposed method using data sets of four stocks. The results show that the proposed method outperforms others in predicting stock prices based on different performance metrics.


LSTM Stock price prediction Dynamic models 


  1. 1.
    Malkiel, B.G., Fama, E.F.: Efficient capital markets: a review of theory and empirical work. J. Finan. 25(2), 383–417 (1970)CrossRefGoogle Scholar
  2. 2.
    Miao, K., Chen, F., Zhao, Z.-G.: Stock price forecast based on bacterial colony RBF neural network. J. Qingdao Univ. (Nat. Sci. Ed.) 2, 011 (2007)Google Scholar
  3. 3.
    Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econ. 31, 307–327 (1986)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Box, G.E., Jenkins, G., Reinsel, G., Ljung, G.: Time Series Analysis: Forecasting and Control. John Wiley & Sons, Hoboken (2015)zbMATHGoogle Scholar
  5. 5.
    Hadavandi, E., Ghanbari, A., Abbasian-Naghneh, S.: Developing an evolutionary neural network model for stock index forecasting. In: Huang, D.-S., McGinnity, M., Heutte, L., Zhang, X.-P. (eds.) ICIC 2010. CCIS, vol. 93, pp. 407–415. Springer, Heidelberg (2010). Scholar
  6. 6.
    Jain, S., Dr. Roopam, G., Dr. Asmita A.M., Stock price prediction on daily stock data. Int. J. Neural Netw. Adv. Appl., 5 (2018) Google Scholar
  7. 7.
    Göçken, M., Özçalıcı, M., Boru, A., Dosdoğru, A.T.: Integrating metaheuristics and artificial neural networks for improved stock price prediction. Expert Syst. Appl. 44, 320–331 (2016)CrossRefGoogle Scholar
  8. 8.
    Kim, K.-J., Han, I.: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Syst. Appl. 19, 125–132 (2000)CrossRefGoogle Scholar
  9. 9.
    Lendasse, A., de Bodt, E., Wertz, V., Verleysen, M.: Non-linear financial time series forecasting - application to the Bel 20 stock market index. Eur. J. Econ. Soc. Syst. 14(1), 81–91 (2000)CrossRefGoogle Scholar
  10. 10.
    Patel, J., Shah, S., Thakkar, P., Kotecha, K.: Predicting stock market index using fusion of machine learning techniques. Expert Syst. Appl. 42, 2162–2172 (2014)CrossRefGoogle Scholar
  11. 11.
    Ticknor, J.L.: A bayesian regularized artificial neural network for stock market forecasting. Expert Syst. Appl. 40, 5501–5506 (2013)CrossRefGoogle Scholar
  12. 12.
    Chen, K., Zhou, Y., Dai, F.: A LSTM-based method for stock returns prediction: a case study of China stock market, In: 2015 IEEE International Conference on Big Data (Big Data) (2015)Google Scholar
  13. 13.
    Nelson, D.M.Q., Pereira, A.C.M., Oliveira, R.A.d.: Stock market’s price movement prediction with LSTM neural networks. In: 2017 International Joint Conference on Neural Networks (IJCNN) (2017)Google Scholar
  14. 14.
    Chiang, W.-C., Enke, D., Wu, T., Wang, R.: An adaptive stock index trading decision support system. Expert Syst. Appl. 59, 195–207 (2016)CrossRefGoogle Scholar
  15. 15.
    Baek, Y., Kim, H.Y.: ModAugNet: a new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Syst. Appl. 113, 457–480 (2018)CrossRefGoogle Scholar
  16. 16.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  17. 17.
    LeCunn, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series, The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1995)Google Scholar
  18. 18.
    Selvin, S.: Stock price prediction using LSTM, RNN and CNN-sliding window model, In: International Conference on Advances in Computing, Communications and Informatics (ICACCI) (2017)Google Scholar
  19. 19.
    Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 39, 43–62 (1997)CrossRefGoogle Scholar
  20. 20.
    Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks, In: ICLR 2016 (2016)Google Scholar
  21. 21.
    Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling, In: INTERSPEECH 2014 (2014)Google Scholar
  22. 22.
    Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling, In: INTERSPEECH 2012 (2012)Google Scholar
  23. 23.
    Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28, 2222–2232 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Finance, Y.: Yahoo! Finance.
  25. 25.
    Nasdaq, “Nasdaq”.
  26. 26.
  27. 27.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: The 3rd International Conference for Learning Representations, San Diego (2014)Google Scholar
  28. 28.
    Kara, Y., Acar Boyacioglu, M., Baykan, Ö.K.: Predicting direction of stock price index movement using artificial neural networks and support vector machines: the sample of the Istanbul stock exchange. Expert syst. Appl. 38, 5311–5319 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Duc Huu Dat Nguyen
    • 1
    Email author
  • Loc Phuoc Tran
    • 1
  • Vu Nguyen
    • 1
  1. 1.Faculty of Information Technology, University of ScienceVietnam National UniversityHo Chi MinhVietnam

Personalised recommendations