Bioinformatics Methods to Discover Antivirals Against Zika Virus

  • Karina SalvatierraEmail author
  • Marcos Vera
  • Hector Florez
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1051)


Zika virus is a member of the Flaviviridae virus family, similar to other viruses that affect humans, such as hepatitis C and dengue virus. After its first appearance in 1947, Zika virus reappeared in 2016 causing an international public health emergency. Zika virus was considered a non dangerous human pathogen; however, it is currently considered a pathogen with serious consequences for human health, showing association with neurological complications such as Guillain-Barre syndrome and microcephaly. Then, it is necessary to get antivirals able to inhibit the replication of the Zika virus since vaccines for this virus are not yet available. Zika virus structure is similar to hepatitis C virus structure. This characteristic suggests that anti-hepatitis C virus agents can be used as alternative in treatments against the Zika virus. This work aims to determine a non-nucleoside analogue antivirals that can be considered possible antivirals against Zika virus. In this study, we used computational methods to analyze the Docking and the modeling of the NS5 polymerase of Zika virus and antivirals.


Bioinformatics Zika virus Antivirals 



Authors are grateful for the support received from Universidad Nacional de Misiones, Posadas (Argentina), and the Information Technologies Innovation (ITI) Research Group, Universidad Distrital Francisco Jose de Caldas, Bogota (Colombia).


  1. 1.
    Alam, A., Imam, N., Ali, S., Malik, M.Z., Ishrat, R., et al.: Recent trends in ZIKV research: a step away from cure. Biomed. Pharmacother. 91, 1152–1159 (2017)CrossRefGoogle Scholar
  2. 2.
    Calvet, G., et al.: Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect. Dis. 16(6), 653–660 (2016)CrossRefGoogle Scholar
  3. 3.
    Cox, B.D., Stanton, R.A., Schinazi, R.F.: Predicting Zika virus structural biology: challenges and opportunities for intervention. Antivir. Chem. Chemother. 24(3–4), 118–126 (2015)CrossRefGoogle Scholar
  4. 4.
    Delvecchio, R., et al.: Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses 8(12), 322 (2016)CrossRefGoogle Scholar
  5. 5.
    Dick, G., Kitchen, S., Haddow, A., et al.: Zika virus (II). Pathogenicity and physical properties. Trans. R. Soc. Trop. Med. Hyg. 46(5), 521–534 (1952)CrossRefGoogle Scholar
  6. 6.
    Eyer, L., et al.: Nucleoside inhibitors of Zika virus. J. Infect. Dis. 214(5), 707–711 (2016)CrossRefGoogle Scholar
  7. 7.
    Fagbami, A.: Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo state. Epidemiol. Infect. 83(2), 213–219 (1979)Google Scholar
  8. 8.
    Fauci, A.S., Morens, D.M.: Zika virus in the Americas–yet another arbovirus threat. N. Engl. J. Med. 374(7), 601–604 (2016)CrossRefGoogle Scholar
  9. 9.
    Fink, S.L., et al.: The antiviral drug arbidol inhibits Zika virus. Sci. Rep. 8(1), 8989 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Florez, H., Salvatierra, K.: Bioinformatics study of mutations of resistance to antivirals in the NS5A gen of HCV. Int. Inf. Inst. (Tokyo) Inf. 20(9), 6665–6672 (2017)Google Scholar
  11. 11.
    Hamel, R., et al.: Zika virus: epidemiology, clinical features and host-virus interactions. Microbes Infect. 18(7–8), 441–449 (2016)CrossRefGoogle Scholar
  12. 12.
    Kieffer, T.L., Kwong, A.D., Picchio, G.R.: Viral resistance to specifically targeted antiviral therapies for hepatitis C (STAT-Cs). J. Antimicrob. Chemother. 65(2), 202–212 (2009)CrossRefGoogle Scholar
  13. 13.
    Koenig, K.L., Almadhyan, A., Burns, M.J.: Identify-isolate-inform: a tool for initial detection and management of Zika virus patients in the emergency department. West. J. Emerg. Med. 17(3), 238 (2016)CrossRefGoogle Scholar
  14. 14.
    Kostyuchenko, V.A., et al.: Structure of the thermally stable Zika virus. Nature 533(7603), 425 (2016)CrossRefGoogle Scholar
  15. 15.
    Kwong, A.D., McNair, L., Jacobson, I., George, S.: Recent progress in the development of selected hepatitis C virus NS3.4A protease and NS5B polymerase inhibitors. Curr. Opin. Pharmacol. 8(5), 522–531 (2008)CrossRefGoogle Scholar
  16. 16.
    Li, C., et al.: Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19(1), 120–126 (2016)CrossRefGoogle Scholar
  17. 17.
    Lou, Z., Sun, Y., Rao, Z.: Current progress in antiviral strategies. Trends Pharmacol. Sci. 35(2), 86–102 (2014)CrossRefGoogle Scholar
  18. 18.
    Organization, W.H., et al.: Zika virus research agenda (2016)Google Scholar
  19. 19.
    Pang, T., Mak, T.K., Gubler, D.J.: Prevention and control of dengue–the light at the end of the tunnel. Lancet Infect. Dis. 17(3), e79–e87 (2017)CrossRefGoogle Scholar
  20. 20.
    Pattnaik, A., et al.: Discovery of a non-nucleoside rna polymerase inhibitor for blocking Zika virus replication through in silico screening. Antivir. Res. 151, 78–86 (2018)CrossRefGoogle Scholar
  21. 21.
    Penié, J.B., González-Piñera, J.G., Rodríguez, M.A.R., Alfonso, P.P.P.: Medicamentos antivirales. Acta Médica 8(1), 86–100 (1998)Google Scholar
  22. 22.
    Petersen, L.R., Jamieson, D.J., Powers, A.M., Honein, M.A.: Zika virus. N. Engl. J. Med. 374(16), 1552–1563 (2016)CrossRefGoogle Scholar
  23. 23.
    Plourde, A.R., Bloch, E.M.: A literature review of Zika virus. Emerg. Infect. Dis. 22(7), 1185 (2016)CrossRefGoogle Scholar
  24. 24.
    Rather, I.A., Lone, J.B., Bajpai, V.K., Paek, W.K., Lim, J.: Zika virus: an emerging worldwide threat. Front. Microbiol 8, 1417 (2017)CrossRefGoogle Scholar
  25. 25.
    Sacramento, C.Q., et al.: The clinically approved antiviral drug sofosbuvir impairs Brazilian Zika virus replication. BioRxiv, p. 061671 (2016)Google Scholar
  26. 26.
    Saiz, J.C., Vázquez-Calvo, Á., Blázquez, A.B., Merino-Ramos, T., Escribano-Romero, E., Martín-Acebes, M.A.: Zika virus: the latest newcomer. Front. Microbiol. 7, 496 (2016)Google Scholar
  27. 27.
    Salvatierra, K., Florez, H.: Analysis of hepatitis C virus in hemodialysis patients. Infectio 20(3), 130–137 (2016)CrossRefGoogle Scholar
  28. 28.
    Salvatierra, K., Florez, H.: Biomedical mutation analysis (BMA): a software tool for analyzing mutations associated with antiviral resistance. F1000Research 5, 1141 (2016)CrossRefGoogle Scholar
  29. 29.
    Salvatierra, K., Florez, H.: Prevalence of hepatitis B and C infections in hemodialysis patients. F1000Research 5, 1–6 (2016) CrossRefGoogle Scholar
  30. 30.
    Song, B.H., Yun, S.I., Woolley, M., Lee, Y.M.: Zika virus: history, epidemiology, transmission, and clinical presentation. J. Neuroimmunol. 308, 50–64 (2017)CrossRefGoogle Scholar
  31. 31.
    Trott, O., Olson, A.J.: Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)Google Scholar
  32. 32.
    Tuset, M., José, M., Del Cacho, E., Alberdi, A., Codina, C., Ribas, J., et al.: Características de los fármacos antivirales. Enfermedades infecciosas y microbiologia clinica 21(8), 433–458 (2003)CrossRefGoogle Scholar
  33. 33.
    Yang, C.C., et al.: A novel dengue virus inhibitor, BP13944, discovered by high-throughput screening with dengue virus replicon cells selects for resistance in the viral NS2B/NS3 protease. Antimicrob. Agents Chemother. 58(1), 110–119 (2014)CrossRefGoogle Scholar
  34. 34.
    Yin, Z., et al.: An adenosine nucleoside inhibitor of dengue virus. Proc. Natl. Acad. Sci. 106(48), 20435–20439 (2009)CrossRefGoogle Scholar
  35. 35.
    Zmurko, J., Marques, R.E., Schols, D., Verbeken, E., Kaptein, S.J., Neyts, J.: The viral polymerase inhibitor 7-deaza-2’-c-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl. Trop. Dis. 10(5), e0004695 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Nacional de MisionesPosadasArgentina
  2. 2.Universidad Distrital Francisco Jose de CaldasBogotáColombia

Personalised recommendations