The Rational Design of Biological Complexity: A Deceptive Metaphor

  • Marc H V Van Regenmortel


Biologists often claim that they follow a rational design strategy when their research is based on molecular knowledge of biological systems. This claim implies that their knowledge of the innumerable causal connections present in biological systems is sufficient to allow them to deduce and predict the outcome of their experimental interventions. The design metaphor is shown to originate in human intentionality and in the anthropomorphic fallacy of interpreting objects, events, and the behavior of all living organisms in terms of goals and purposes. Instead of presenting rational design as an effective research strategy, it would be preferable to acknowledge that advances in biomedicine are nearly always derived from empirical observations based on trial and error experimentation. The claim that rational design is an effective research strategy was tested in the case of current attempts to develop synthetic vaccines, in particular against human immunodeficiency virus. It was concluded that in this field of biomedicine, trial and error experimentation is more likely to succeed than a rational design approach. Current developments in systems biology are described that may eventually give us a better understanding of the immune system and this may enable us in the future to develop improved vaccines.


Biological complexity Biological networks Causal connections Human immunodeficiency virus Immune system 


  1. Achinstein P. The nature of explanation. Oxford University Press: New York; 1983.Google Scholar
  2. Aderem A, Smith KD. A systems approach to dissecting immunity and inflammation. Semin Immunol. 2004;16:55–67.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allen C, Bekoff M. Biological function, adaptation, and natural design. Philos Sci. 1995;62:609–22.CrossRefGoogle Scholar
  4. Alm E, Arkin AP. Biological networks. Curr Opin Struct Biol. 2003;13:193–202.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Auffray C, Imbeaud S, Roux-Rouquié M, Hood L. From functional genomics to systems biology: concepts and practices. CR Biol. 2003;326:879–92.CrossRefGoogle Scholar
  6. Ayala FJ. In: Dembski WA, Ruse M, editors. Debating design: from Darwin to DNA. Cambridge: Cambridge University Press; 2004. p. 55–80.CrossRefGoogle Scholar
  7. Bacarese-Hamilton T, Mezzasoma L, Ardizzoni A, et al. Serodiagnosis of infectious diseases with antigen microarrays. J Appl Microbiol. 2004;96:10–7.PubMedCrossRefGoogle Scholar
  8. Bahk YY, Kim SA, Kim JS, et al. Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics. 2004;4:3299–307.PubMedCrossRefGoogle Scholar
  9. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.PubMedCrossRefGoogle Scholar
  10. Behe MJ. Darwin’s black box: the biochemical challenge to evolution. New York: Free Press; 1996.Google Scholar
  11. Berger R. Understanding science: why causes are not enough. Philos Sci. 1998;65:306–32.CrossRefGoogle Scholar
  12. Bernardes AT, Zorzenon Dos S. Immune network at the edge of chaos. J Theor Biol. 1997;186:173–87.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999;283:381–7.PubMedPubMedCentralGoogle Scholar
  14. Bock G, Goode J. The limits of reductionism in biology. Novartis Foundation Symposium no. 213. Chichester: Wiley; 1998.Google Scholar
  15. Bork P, Serrano L. Towards cellular systems in 4D. Cell. 2005;121:507–9.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bottaro A, Inlay MA, Matzke NJ. Immunology in the spotlight at the Dover ‘Intelligent Design’ trial. Nat Immun. 2006;7:433–5.CrossRefGoogle Scholar
  17. Bunge M. Philosophical dictionary. Amherst, MA: Prometheus Books; 2003.Google Scholar
  18. Cartwright N. How the laws of physics lie. New York, NY: Oxford Uduniversity Press; 1983. p. 1–221.Google Scholar
  19. Chakraborty AK, Dustin ML, Shaw AS. In silico models for cellular and molecular immunology: successes, promises and challenges. Nat Immunol. 2003;4:933–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Crotty S, Ahmed R. Immunological memory in humans. Semin Immunol. 2004;16:197–203.PubMedCrossRefGoogle Scholar
  21. Csete ME, Doyle JC. Reserve engineering of biological complexity. Science. 2002;295:1664–9.CrossRefGoogle Scholar
  22. Dawkins R. River out of eden. London: Phoenix Orion Books; 1995.Google Scholar
  23. Dembski WA, Ruse M, editors. Debating design: from Darwin to DNA. Cambridge, UK: Cambridge University Press; 2004.Google Scholar
  24. Demchenko AP. Recognition between flexible protein molecules: induced and assisted folding. J Mol Recognit. 2001;14:42–61.PubMedPubMedCentralGoogle Scholar
  25. Dupré J. The disorder of things. Metaphysical foundations of the disunity of science. Cambridge, MA: Harvard University Press; 1993.Google Scholar
  26. Emmeche C. Aspects of complexity in life and science. Philosophica. 1997;59:41–68.Google Scholar
  27. Enshell-Seijffers D, Denisov D, Groisman B, Smelyanski L, Meyuhas R, Gross G, Denisova G, Gershoni JM. The mapping and reconstitution of a conformational discontinuous B-cell epitope of HIV-1. J Mol Biol. 2003;334:87–101.PubMedPubMedCentralGoogle Scholar
  28. Fagerstam LG, Karlsson R. In: Van Oss C, Van Regenmortel MHV, editors. Immunochemistry. New York: Dekker; 1994. p. 949–70.Google Scholar
  29. Fischer D, Rood D, Barrette RW, et al. Intranasal immunization of guinea pigs with an immunodominant foot-and-mouth disease virus peptide conjugate induces mucosal and humoral antibodies and protection against challenge. J Virol. 2003;77:7486–91.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Friede M, Muller S, Briand JP, Plaué S, Fernandes I, Frisch B, Schuber F, Van Regenmortel MHV. Selective induction of protection against influenza virus infection in mice by a lipid-peptide conjugate delivered in liposomes. Vaccine. 1994;12:791–7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Glassman RH, Sun AY. Biotechnology: identifying advances from the hype. Nat Rev Drug Discov. 2004;3:177–83.CrossRefGoogle Scholar
  32. Goh C-S, Milburn D, Gerstein M. Conformational changes associated with protein–protein interactions. Curr Opin Struct Biol. 2004;14:104–9.Google Scholar
  33. Graham G. Genes: a philosophical enquiry. London: Routledge; 2002.Google Scholar
  34. Gross L. Scientific illiteracy and the partisan takeover of biology. PLoS Biol. 2006;4(5):e167. Scholar
  35. Haab BB. Antibody arrays in cancer research. Proteomics. 2005;4:377–83.Google Scholar
  36. Haas G, Karaoli G, Ebermayer K, et al. Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics. 2002;2:313–24.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hacking I. Representing and intervening. Princeton, NJ: Cambridge University Press; 1983. p. 1–304.Google Scholar
  38. Hanke D. In: Cornwell J, editor. Explanations. Styles of explanation in science. Oxford: Oxford University Press; 2004. p. 143–55.Google Scholar
  39. Havlasova J, Hernychova L, Halada P, et al. Mapping of immunoreactive antigens of Francisella tularensis live vaccine strain. Proteomics. 2002;2:857–67.PubMedCrossRefGoogle Scholar
  40. Ho J, Uger RA, Zwick MB, Luscher MA, Barber BH, MacDonald KS. Conformational constraints imposed on a pan-neutralizing HIV-1 antibody epitope result in increased antigenicity but not neutralizing response. Vaccine. 2005;23:1559–73. Scholar
  41. Holland JH. Emergence. Reading, MA: Perseus Books; 1994.Google Scholar
  42. Joyce JG, Hurni WM, Bogusky MJ, Garsky VM, Liang X, Citron MP, et al. Enhancement of alpha-helicity in the HIV-1 inhibitory peptide DP178 leads to an increased affinity for human monoclonal antibody 2F5 but does not elicit neutralizing responses in vitro. Implications for vaccine design. J Biol Chem. 2002;277:45811–20. Scholar
  43. Karlsson R, Roos H. Reaction kinetics. In: Price CP, Newman DJ, editors. Principles and practice of immunoassay. 2nd ed. London: Macmillan; 1997. p. 99–122.Google Scholar
  44. Kingsmore SF. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov. 2006;5:310–20.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kirschner MW, Gerhart JC. The plausibility of life: resolving Darwin’s dilemna. New Haven, CT: Yale University Press; 2005.Google Scholar
  46. Kistler M. 2003. Available at:
  47. Kitano H. Systems biology: a brief overview. Science. 2002;295:1662–4.PubMedPubMedCentralGoogle Scholar
  48. Kitcher P. Abusing science: the case against creationism. Cambridge, MA: MIT Press; 1982.Google Scholar
  49. Kitcher P. Function and design. In: Hull DL, Ruse ME, editors. The philosophy of biology. New York: Oxford University Press; 1998. p. 258–79.Google Scholar
  50. Klade CS. Proteomics approaches towards antigen discovery and vaccine development. Curr Opin Mol Ther. 2002;4:216–23.PubMedPubMedCentralGoogle Scholar
  51. Kowalczewska M, Fenoller F, Lafitte D, et al. Identification of candidate antigen in Whipple's disease using a serological proteomic approach. Proteomics. 2006;6:3294–305.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kubinyi H. Drug research: myths, hype and reality. Nat Rev Drug Discov. 2003;2:665–8.CrossRefGoogle Scholar
  53. Kusnezow W, Hoheisel JD. Solid supports for microarray immunoassays. J Mol Recog. 2003;16:165–76.CrossRefGoogle Scholar
  54. Kwong PD, Wyatt R, Robinson J, Sweet RW, et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998;393:648–59.PubMedPubMedCentralGoogle Scholar
  55. Langeveld JPM, Casal JI, Osterhaus ADME, Cortès E, De Swart R, Vela C, Dalsgaard K, Puijk WC, Schaaper WMM, Meloen RH. First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs. J Virol. 1994;68:4506–13.PubMedPubMedCentralGoogle Scholar
  56. Larsericsdotter H, Jansson O, Zhukov A, et al. Optimizing the surface plasmon resonance/mass spectrometry interface for functional proteomics applications: how to avoid and utilize nonspecific adsorption. Proteomics. 2006;6:2355–64.PubMedCrossRefGoogle Scholar
  57. Lebrun SJ, Petchput WN, Hui A, et al. Development of a sensitive, colorometric microarray assay for allergen-responsive human IgE. J Immunol Methods. 2005;300:24–31.PubMedCrossRefGoogle Scholar
  58. Leng Q, Bentwich Z. Beyond self and nonself: Fuzzy recognition of the immune system. Scand J Immunol. 2002;56:224–32.Google Scholar
  59. Love JC, Ronan JL, Grotenberg GM, et al. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol. 2006;24:703–7.PubMedCrossRefGoogle Scholar
  60. Mahner M, Bunge M. Foundations of biophilosophy. Springer: Berlin; 1997.Google Scholar
  61. Markgren PO, Hamalainen M, Danielson UH. Kinetic analysis of the interaction between HIV-1 protease and inhibitors using optical biosensor technology. Anal Biochem. 2000;279:71–8.PubMedCrossRefGoogle Scholar
  62. Melendez-Hevia E, Waddell TG, Cascante M. The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution. J Mol Evol. 1996;43:293–303.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Menzies P, Price H. Causation as a secondary quality. Br J Philos Sci. 1993;44:187–203.CrossRefGoogle Scholar
  64. Michaud GA, Salcius M, Zhou F, et al. Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol. 2003;21:1509–12.PubMedCrossRefGoogle Scholar
  65. Miller KR. In: Dembski WA, Ruse M, editors. Debating design: from Darwin to DNA. Cambridge: Cambridge University Press; 2004. p. 81–97.CrossRefGoogle Scholar
  66. Morowitz HJ. The emergence of everything. How the world became complex. Oxford: Oxford University Press; 2002.Google Scholar
  67. Murzin AG, Patthy L. Sequences and topology: from sequence to structure to function. Curr Opin Struct Biol. 1999;9:359–62.Google Scholar
  68. Nagorsen D, Marinola FM, Panelli MC. Cytokine and chemokine expression profiles of maturing dendritic cells using multiprotein platform arrays. Cytokine. 2004;25:31–5.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Nicholson BH. Synthetic vaccines. Oxford: Blackwell Scientific Publishers; 1994.Google Scholar
  70. Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, Wyatt R, Kwong PD. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J Virol. 2004;78:10724–37.PubMedPubMedCentralGoogle Scholar
  71. O’Malley MA, Dupré J. Fundamental issues in systems biology. BioEssays. 2005;27:1270–6.PubMedPubMedCentralGoogle Scholar
  72. Ohara R, Knappik A, Shimada K, et al. Antibodies for proteomic research: comparison of traditional immunization with recombinant antibody technology. Proteomics. 2006;6:2638–46.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Parren PW, Burton DR. The antiviral activity of antibodies in vitro and in vivo. Adv Immunol. 2001;77:195–262.Google Scholar
  74. Pennock RT. In: Dembski WA, Ruse M, editors. Debating design: from Darwin to DNA. Cambridge: Cambridge University Press; 2004. p. 130–48.CrossRefGoogle Scholar
  75. Presta L. Antibody engineering for therapeutics. Curr Opin Struct Biol. 2003;13:519–25.PubMedCrossRefGoogle Scholar
  76. Purcell AW, Gorman J. Immunoproteomics: mass spectrometry-based methods to study the targets of the immune response. J Mol Cell Proteomics. 2004;3:193–208.CrossRefGoogle Scholar
  77. Rich R, Myszka D. Survey of the year 2003 commercial optical biosensor literature. J Mol Recognit. 2005a;18:1–39.PubMedCrossRefGoogle Scholar
  78. Rich R, Myszka D. Survey of the year 2004 commercial optical biosensor literature. J Mol Recognit. 2005b;18:431–78.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Robinson WH, Steinman L, Utz PJ. Protein arrays for autoantibody profiling and fine-specificity mapping. Proteomics. 2003;3:2077–84.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Rose S. Lifelines. London: Penguin; 1997.Google Scholar
  81. Rosenberg A. Philosophy of science. London: Routledge; 2000.Google Scholar
  82. Ruse M. Darwin and design: does evolution have a purpose? Cambridge, MA: Harvard University Press; 2002.Google Scholar
  83. Ruse M. The evolution-creation struggle. Cambridge, MA: Harvard University Press; 2005.CrossRefGoogle Scholar
  84. Salmon WC. Causality and explanation. Oxford: Oxford University Press; 1998.Google Scholar
  85. Saphire EO, Parren PWHI, Pantophlet R, Zwick MB, et al. Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science. 2001;293:1155–9.PubMedPubMedCentralGoogle Scholar
  86. Schuck P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct. 1997;26:541–66.PubMedCrossRefGoogle Scholar
  87. Shoshan SH, Admon A. Proteomics in cancer vaccine development. Expert Rev Proteomics. 2005;2:229–41.PubMedCrossRefGoogle Scholar
  88. Shrager J. The fiction of function. Bioinformatics. 2003;19:1934–6.PubMedCrossRefGoogle Scholar
  89. Silverstein AM, Rose NR. On the implications of polyclonal B cell activation. Nat Immunol. 2003;4:931–2.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Thornhill RH, Ussery DW. A classification of possible routes of Darwinian evolution. J Theor Biol. 2000;203:111–6.PubMedCrossRefGoogle Scholar
  91. Tian Y, Ramesh CV, Ma X, Naqvi S, Patel T, Cenizal T, Tiscione M, Diaz K, Crea T, Arnold E, Arnold GF, Taylor JW, et al. Structure-affinity relationships in the gp41 ELDKWA epitope for the HIV-1 neutralizing monoclonal antibody 2F5: effects of side-chain and backbone modifications and conformational constraints. J Pept Res. 2002;59:264–76.PubMedPubMedCentralGoogle Scholar
  92. Uversky VN, Oldfield CJ, Dunker AK. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit. 2005;18:343–84.Google Scholar
  93. Van Regenmortel MHV. Mapping epitope structure and activity: from one-dimensional prediction to four-dimensional description of antigenic specificity. Methods. 1996;9:465–72.PubMedPubMedCentralGoogle Scholar
  94. Van Regenmortel MHV. Molecular dissection of protein antigens and the prediction of epitopes. In: Van Regenmortel MHV, Muller S, editors. Synthetic peptides as antigens. Amsterdam: Elsevier; 1999a. p. 1–78.Google Scholar
  95. Van Regenmortel MHV. Molecular design versus empirical discovery in peptide-based vaccines. Coming to terms with fuzzy recognition sites and ill-defined structure-function relationships in immunology. Vaccine. 1999b;18:216–21. Scholar
  96. Van Regenmortel MHV. Molecular dissection of protein antigens and the prediction of epitopes. In: Van Regenmortel MHV, Muller S, editors. Synthetic peptides as antigens. Amsterdam: Elsevier; 1999c. p. 281–317.Google Scholar
  97. Van Regenmortel MHV. Are there two distinct research strategies for developing biologically active molecules: rational design and empirical selection. J Mol Recognit. 2000;13:1–4.Google Scholar
  98. Van Regenmortel MHV. Antigenicity and immunogenicity of synthetic peptides. Biologicals. 2001a;29:209–13.PubMedPubMedCentralGoogle Scholar
  99. Van Regenmortel MHV. Proteomics versus genomics. What type of structure-function relationship are we looking for? J Mol Recognit. 2001c;14:321–2.PubMedCrossRefGoogle Scholar
  100. Van Regenmortel MHV. Reductionism and the search for structure-function relationships in antibody molecules. J Mol Recognit. 2002a;15:240–7.Google Scholar
  101. Van Regenmortel MHV. A paradigm shift is needed in proteomics: ‘structure determines function’ should be replaced by 'binding determines function. J Mol Recognit. 2002b;15:349–51.PubMedCrossRefGoogle Scholar
  102. Van Regenmortel MHV. Biological complexity emerges from the ashes of genetic reductionism. J Mol Recognit. 2004a;17:145–8.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Van Regenmortel MHV. Reductionism and complexity in molecular biology. EMBO J. 2004b;5:1016–20.CrossRefGoogle Scholar
  104. Van Regenmortel MHV. The contribution of optical biosensors to the analysis of structure-function relationships in proteins. In: Kamp RM, Calvette JJ, Choli-Papadopoulou T, editors. Methods in proteome and protein analysis. Berlin: Springer; 2004c. p. 93–101.Google Scholar
  105. Van Regenmortel MHV. Immunoinformatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of synthetic peptide vaccines. J Mol Recognit. 2006;19:183–7.Google Scholar
  106. Villen J, de Oliviera E, Nunez JI, Molina N, Sobrino F, Andreu D. Towards a multi-site synthetic vaccine to foot-and-mouth disease: addition of a discontinuous site peptide mimic increases the neutralization response in immunized animals. Vaccine. 2004;22:3523–9.PubMedPubMedCentralGoogle Scholar
  107. Wagner A. Robustness and evolvability in living systems. Princeton: Princeton University Press; 2005.Google Scholar
  108. Weber BH, Depew DJ. In: Dembski WA, Ruse M, editors. Debating design: from Darwin to DNA. Cambridge: Cambridge University Press; 2004. p. 173–90.CrossRefGoogle Scholar
  109. Weng G, Bhalla US, Iyengar R. Complexity in biological signalling systems. Science. 1999;284:92–6.PubMedPubMedCentralGoogle Scholar
  110. Williamson NA, Purcell AW. Use of proteomics to define targets of T-cell immunity. Expert Rev Proteomics. 2005;2:367–80.PubMedCrossRefGoogle Scholar
  111. Wilson IA, Stanfield RL. Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol. 1994;4:857–67.PubMedPubMedCentralGoogle Scholar
  112. Woodward J. Making things happen: a theory of causal explanation. Oxford: Oxford University Press; 2003. p. 410.Google Scholar
  113. Young M, Edis T, editors. Why intelligent design fails. Piscataway, NJ: Rutgers University Press; 2004.Google Scholar
  114. Zolla-Pazner S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol. 2004;4:199–210.PubMedPubMedCentralGoogle Scholar
  115. Zwick MB, Wang M, Poignard P, Stiegler G, Katinger H, Burton DR, et al. Neutralization synergy of human immunodeficiency virus type 1 primary isolates by cocktails of broadly neutralizing antibodies. J Virol. 2001b;75:12198–208. Scholar
  116. Zwick MB, Jensen R, Church S, Wang M, Stiegler G, Kunert R, Katinger H, Burton DR. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. J Virol. 2005;79:1252–61.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marc H V Van Regenmortel
    • 1
  1. 1.School of BiotechnologyUniversity of StrasbourgIllkirchFrance

Personalised recommendations