Advertisement

Nature and Consequences of Biological Reductionism for the Immunological Study of Infectious Diseases

  • Marc H V Van Regenmortel
Chapter

Abstract

Evolution has conserved “economic” systems that perform many functions, faster or better, with less. For example, three to five leukocyte types protect from thousands of pathogens. To achieve so much with so little, biological systems combine their limited elements, creating complex structures. Yet, the prevalent research paradigm is reductionist. Focusing on infectious diseases, reductionist and non-reductionist views are here described. The literature indicates that reductionism is associated with information loss and errors, while non-reductionist operations can extract more information from the same data. When designed to capture one-to-many/many-to-one interactions—including the use of arrows that connect pairs of consecutive observations—non-reductionist (spatial–temporal) constructs eliminate data variability from all dimensions, except along one line, while arrows describe the directionality of temporal changes that occur along the line. To validate the patterns detected by non-reductionist operations, reductionist procedures are needed. Integrated (non-reductionist and reductionist) methods can (i) distinguish data subsets that differ immunologically and statistically; (ii) differentiate false-negative from -positive errors; (iii) discriminate disease stages; (iv) capture in vivo, multilevel interactions that consider the patient, the microbe, and antibiotic-mediated responses; and (v) assess dynamics. Integrated methods provide repeatable and biologically interpretable information.

Keywords

Methods Host Microbe interactions Reductionism Non-reductionism Pattern recognition 

References

  1. Amarasingham A, Geman S, Harrison MT. Ambiguity and nonidentifiability in the statistical analysis of neural codes. Proc Natl Acad Sci U S A. 2015;112:6455–60.  https://doi.org/10.1073/pnas.1506400112.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andreopoulos A, Tsotsos JK. 50 Years of object recognition: directions forward. Comput Vis Image Underst. 2013;117:827–91.  https://doi.org/10.1016/j.cviu.2013.04.005.CrossRefGoogle Scholar
  3. Anuforom O, Wallace GR, Piddock LV. The immune response and anti-bacterial therapy. Med Microbiol Immunol. 2015;204:151–9.  https://doi.org/10.1007/s00430-014-0355-0.CrossRefPubMedGoogle Scholar
  4. Auffrey C, Nottale L. Scale relativity theory and integrative systems biology 1. Founding principles and scale laws. Prog Biophys Mol Biol. 2008;97:79–114.  https://doi.org/10.1016/j.pbiomolbio.2007.09.002.CrossRefGoogle Scholar
  5. Bertuglia CS, Vaio F. Nonlinearity, chaos and complexity. Oxford: Oxford University Press; 2005.Google Scholar
  6. Berzofsky JA. Intrinsic and extrinsic factors in protein antigenic structure. Science. 1985;229:932–40.PubMedPubMedCentralGoogle Scholar
  7. Binder H, Blettner M. Big data in medical science – a biostatistical view. Dtsch Arztebl Int. 2015;112:137–42.  https://doi.org/10.3238/arztebl.2015.0137.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burggren W, Monticino MG. Assessing physiological complexity. J Exp Biol. 2005;208:3221–32.  https://doi.org/10.1242/jeb.01762.CrossRefPubMedGoogle Scholar
  9. Casadevall A, Pirofski L. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun. 1999;67:3703–13.PubMedPubMedCentralGoogle Scholar
  10. Casadevall A, Pirofski L. Host-pathogen interactions: the basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun. 2000;68:6511–8.  https://doi.org/10.1128/IAI.68.12.6511-6518.2000.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Casadevall A, Pirofski LA. What is a host? Incorporating the microbiota into the damage-response framework. Infect Immun. 2015;83:2–7.  https://doi.org/10.1128/IAI.02627-14.CrossRefPubMedGoogle Scholar
  12. Casadevall A, Fang FC, Pirofski LA. Microbial virulence as an emergent property: consequences and opportunities. PLoS Pathog. 2011;7:e1002136.  https://doi.org/10.1371/journal.ppat.1002136.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cedersund G, Roll J. Systems biology: model based evaluation and comparison of potential explanations for given biological data. FEBS J. 2009;276:903–22.  https://doi.org/10.1111/j.1742-4658.2008.06845.x.CrossRefPubMedGoogle Scholar
  14. Chatzipanagiotou S, Ioannidis A, Trikka-Graphakos E, Charalampaki N, Sereti C, Piccinini R, et al. Detecting the hidden properties of immunological data and predicting the mortality risks of infectious syndromes. Front Immunol. 2016;7:217.  https://doi.org/10.3389/fimmu.2016.00217.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cohen J. The cost of dichotomization. Appl Psychol Meas. 1983;7:249–53.  https://doi.org/10.1177/014662168300700301.CrossRefGoogle Scholar
  16. Cohen J, Vincent JL, Adhikari NKJ, Machado FR, Angus DC, Calandra T, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15:581–614.  https://doi.org/10.1016/S1473-3099(15)70112-X.CrossRefPubMedGoogle Scholar
  17. Conti F, Valerio MC, Zbilut JP, Giuliani A. Will systems biology offer new holistic paradigms to life sciences? Syst Synth Biol. 2007;1:161–5.  https://doi.org/10.1007/s11693-008-9016-1.CrossRefPubMedGoogle Scholar
  18. Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40:463–75.  https://doi.org/10.1016/j.immuni.2014.04.001.CrossRefPubMedGoogle Scholar
  19. Esparza J. A new scientific paradigm may be needed to finally develop an HIV vaccine. Front Immunol. 2015;6:124.  https://doi.org/10.3389/fimmu.2015.00124.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Esper AM, Moss M, Lewis CA, Nisbet R, Mannino DM, Martin GS. The role of infection and comorbidity: factors that influence disparities in sepsis. Crit Care Med. 2006;34:2576–82.  https://doi.org/10.1097/01.CCM.0000239114.50519.0Eg3725.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fair JM, Rivas AL. Systems biology and ratio-based, real-time disease sur-veillance. Transbound Emerg Dis. 2015;62:437–45.  https://doi.org/10.1111/tbed.12162.CrossRefPubMedGoogle Scholar
  22. Ford N, Shubber Z, Meintjes G, Grinsztejn B, Eholie S, Mills EJ, et al. Causes of hospital admission among people living with HIV worldwide: a systematic review and meta-analysis. Lancet HIV. 2015;2:e438–44.  https://doi.org/10.1016/S2352-3018(15)00137-X.CrossRefPubMedGoogle Scholar
  23. Gannon F. Too complex to comprehend? EMBO Rep. 2007;8:705.CrossRefGoogle Scholar
  24. Ghilarov AM. The changing place of theory in 20th century ecology: from universal laws to array of methodologies. Oikos. 2001;92:357–62.  https://doi.org/10.1034/j.1600-0706.2001.920218.x.CrossRefGoogle Scholar
  25. Gill J, Hangartner D. Circular data in political science and how to handle it. Polit Anal. 2010;18:316–36.  https://doi.org/10.1093/pan/mpq009.CrossRefGoogle Scholar
  26. Greenhalgh T, Howick J, Maskrey N. Evidence based medicine: a movement in crisis? BMJ. 2014;348:g3725.  https://doi.org/10.1136/bmj.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hacking I. Representing and intervening. Princeton, NJ: Cambridge University Press; 1983. p. 1–304.CrossRefGoogle Scholar
  28. Iandiorio MJ, Fair JM, Chatzipanagiotou S, Ioannidis A, Trikka-Graphakos E, Charalampaki N, et al. Preventing data ambiguity in infectious diseases with four-dimensional, earlier, personalized, in vivo evaluations. PLoS One. 2016;11:e0159001.  https://doi.org/10.1371/journal.pone.0159001.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Katz JN, King G. A statistical model for multiparty electoral data. Am Polit Sci Rev. 1999;93:15–32.  https://doi.org/10.2307/2585758.CrossRefGoogle Scholar
  30. Kitano H. Systems biology: a brief overview. Science. 2002;295:1662–4.CrossRefGoogle Scholar
  31. Klinke DJ. Validating a dimensionless number for glucose homeostasis in humans. Ann Biomed Eng. 2009;37:1886–96.  https://doi.org/10.1007/s10439-009-9733-y.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Knowlton ER, Lepone LM, Li J, Rappocciolo G, Jenkins FJ, Rinaldo CR. Professional antigen presenting cells in human herpesvirus 8 infection. Front Immunol. 2013;3:427.  https://doi.org/10.3389/fimmu.2012.00427.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lecca P, Mura I, Re A, Barker GC, Ihekwaba AEC. Time series analy sis of the Bacillus subtilis sporulation network reveals low dimensional chaotic dynamics. Front Microbiol. 2016;7:1760.  https://doi.org/10.3389/fmicb.2016.01760.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Leitner G, Blum S, Rivas AL. Visualizing the indefinable: three-dimensional complexity of ‘infectious diseases’. PLoS One. 2015;10:e0123674.  https://doi.org/10.1371/journal.pone.01236742015.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Loscalzo J, Barabasi AL. Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med. 2011;3:619–27.  https://doi.org/10.1002/wsbm.144.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Macklem PT, Seely A. Towards a definition of life. Perspect Biol Med. 2010;53:330–40.  https://doi.org/10.1353/pbm.0.0167.CrossRefPubMedGoogle Scholar
  37. Margineanu DG. Neuropharmacology beyond reductionism – a likely prospect. Biosystems. 2016;141:1–9.  https://doi.org/10.1016/j.biosystems.2015.11.010.CrossRefPubMedGoogle Scholar
  38. Mazzocchi F. Complexity in biology. EMBO Rep. 2008;9:10–4.PubMedPubMedCentralGoogle Scholar
  39. Mazzocchi F. Complexity and the reductionism–holism debate in systems biology. Wiley Interdiscip Rev Syst Biol Med. 2012;4:413–27.  https://doi.org/10.1002/wsbm.1181.CrossRefPubMedGoogle Scholar
  40. Mokyr J. The gifts of Athena. Princeton, NJ: Princeton University Press; 2002a. 359 p.Google Scholar
  41. Mokyr J. Technology and the problem of human knowledge. In: The gifts of Athena. Historical origins of the knowledge economy. Princeton: Princeton University Press; 2002b. p. 1–27.Google Scholar
  42. Myers SR, Leigh IM, Navsaria H. Epidermal repair results from activation of follicular and epidermal progenitor keratinocytes mediated by a growth factor cascade. Wound Repair Regen. 2007;15:693–701.  https://doi.org/10.1111/j.1524-475X.2007.00297.x.CrossRefPubMedGoogle Scholar
  43. Noble D. Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol. 2008b;93:16–26.  https://doi.org/10.1113/expphysiol.2007.038695.CrossRefPubMedGoogle Scholar
  44. Noble D. Biophysics and systems biology. Phil Trans R Soc A. 2010;368:1125–39.  https://doi.org/10.1098/rsta.2009.0245.CrossRefPubMedGoogle Scholar
  45. Osinga HM, Sherman A, Tsaneva-Atanasova K. Cross-currents between biology and mathematics: the codimension of pseudo-plateau bursting. Discrete Contin Dyn Syst Ser A. 2012;32:2853–77.  https://doi.org/10.3934/dcds.2012.32.2853.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pilgrim D. The biopsychosocial model in health research: its strengths and limitations for critical realists. J Crit Realism. 2015;14:164–80.  https://doi.org/10.1179/1572513814Y.0000000007.CrossRefGoogle Scholar
  47. Pirofski L, Casadevall A. What is infectiveness and how is it involved in infection and immunity? BMC Immunol. 2015;16:13.  https://doi.org/10.1186/s12865-015-0076-1.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pomorska-Mól M, Pejsak Z. Effects of antibiotics on acquired immunity in vivo – current state of knowledge. Pol J Vet Sci. 2012;15:583–9.  https://doi.org/10.2478/v10181-012-0089-0.CrossRefPubMedGoogle Scholar
  49. Qu Z, Garfinkel A, Weiss JN, Nivala M. Multi-scale modeling in biology: how to bridge the gaps between scales? Prog Biophys Mol Biol. 2011;107:21–31.  https://doi.org/10.1016/j.pbiomolbio.2011.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Richards FF, Konigsberg WH. Speculations. How specific are antibodies? Immunochemistry. 1973;10:545–53.  https://doi.org/10.1016/0019-2791(73)90227-9.CrossRefPubMedGoogle Scholar
  51. Rivas AL, Jankowski MD, Piccinini R, Leitner G, Schwarz D, Anderson KL, et al. Feedback-based, system-level properties of vertebrate-microbial interac-tions. PLoS One. 2013;8:e53984.  https://doi.org/10.1371/journal.pone.0053984.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rivas AL, Hoogesteijn AL, Piccinini R. Beyond numbers: the informative patterns of staphylococcal dynamics. Curr Pharm Des. 2015;21:2122–30.  https://doi.org/10.2174/1381612821666150310104053.CrossRefPubMedGoogle Scholar
  53. Roberts AEL, Kragh KN, Bjarnsholt T, Diggle SP. The limitations of in vitro experimentation in understanding biofilms and chronic infection. J Mol Biol. 2015;427:3646–61.  https://doi.org/10.1016/j.jmb.2015.09.002.CrossRefPubMedGoogle Scholar
  54. Robson B. The dragon on the gold: myths and realities for data mining in biomedicine and biotechnology using digital and molecular libraries. J Proteome Res. 2005;3:1113–9.  https://doi.org/10.1021/pr0499242.CrossRefGoogle Scholar
  55. Ronacher K, Joosten SA, van Crevel R, Dockrell HM, Walzl G, Ottenhoff THM. Acquired immunodeficiencies and tuberculosis: focus on HIV/ AIDS and diabetes mellitus. Immunol Rev. 2015;264:121–37.  https://doi.org/10.1111/imr.12257.CrossRefPubMedGoogle Scholar
  56. Schubert W. Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems. J Mol Recognit. 2014;27:3–18.PubMedPubMedCentralGoogle Scholar
  57. Skinner JE. Low-dimensional chaos in biological systems. Biotechnology. 1994;12:596–600.  https://doi.org/10.1038/nbt0694-596.CrossRefPubMedGoogle Scholar
  58. Talmage DW. Immunological specificity, unique combinations of selected natural globulins provide an alternative to the classical concept. Science. 1959;129:1643–8.PubMedPubMedCentralGoogle Scholar
  59. Tieri P, Grignolio A, Zaikin A, Mishto M, Remondini D, Castellani GC, et al. Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system. Theor Biol Med Model. 2010;7:32.  https://doi.org/10.1186/1742-4682-7-32.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, et al. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev. 2014;114:6844–79.  https://doi.org/10.1021/cr400713r.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Van Regenmortel MHV. Reductionism and the search for structure-function relationships in antibody molecules. J Mol Recognit. 2002a;15:240–7.Google Scholar
  62. Van Regenmortel MHV. Reductionism and complexity in molecular biology. EMBO J. 2004b;5:1016–20.CrossRefGoogle Scholar
  63. Van Regenmortel MHV. The rational design of biological complexity: a deceptive metaphor. Proteomics. 2007;7:965–75.Google Scholar
  64. Van Regenmortel MHV. Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol. 2012b;3:194.  https://doi.org/10.3389/fimmu.2012.00194.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Van Regenmortel MHV. Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. J Mol Recognit. 2014a;27:627–39.CrossRefGoogle Scholar
  66. Van Regenmortel MHV. An outdated notion of antibody specificity is one of the major detrimental assumptions of the structure-based reverse vaccinology paradigm, which prevented it from developing an effective HIV-1 vaccine. Front Immunol. 2014b;5:593.  https://doi.org/10.3389/fimmu.1014.00593.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Van Regenmortel MHV. Why does the molecular structure of broadly neutralizing monoclonal antibodies isolated from individuals infected with HIV-1 not inform the rational design of an HIV-1 vaccine? AIMS Public Health. 2015a;2:183–93.CrossRefGoogle Scholar
  68. Van Regenmortel MHV. Paradigm changes are required in HIV vaccine research. Front Immunol. 2015b;6:326.  https://doi.org/10.3389/fimmu.2015.00326.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Van Regenmortel MHV. Structure-based reverse vaccinology failed in the case of HIV because it disregarded accepted immunological theory. Int J Mol Sci. 2016b;17:1591–625.  https://doi.org/10.3390/ijms17091591.CrossRefGoogle Scholar
  70. von Bertalanffy L. The theory of open systems in physics and biology. Science. 1950;111:23–9.  https://doi.org/10.1126/science.111.2872.23.CrossRefGoogle Scholar
  71. Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, et al. Photoantimicrobials – are we afraid of the light? Lancet Infect Dis. 2017;17:e49–55.  https://doi.org/10.1016/S1473-3099(16)30268-7.CrossRefPubMedGoogle Scholar
  72. Wallis R. The glory of gravity – Halley comet 1759. Ann Sci. 1964;41:279–86.  https://doi.org/10.1080/00033798400200271.CrossRefGoogle Scholar
  73. Wolkenhauer O, Green S. The search for organizing principles as a cure against reductionism in systems medicine. FEBS J. 2013;280:5938–48.  https://doi.org/10.1111/febs.12311.CrossRefPubMedGoogle Scholar
  74. Yordanov Y, Dechartres A, Porcher R, Boutron I, Altman DG, Ravaud P. Avoidable waste of research related to inadequate methods in clinical trials. BMJ. 2015;35:h809.  https://doi.org/10.1136/bmj.h809.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marc H V Van Regenmortel
    • 1
  1. 1.School of BiotechnologyUniversity of StrasbourgIllkirchFrance

Personalised recommendations