Advertisement

Very True Operators on Quasi-pseudo-MV Algebras

  • Guoqing Yang
  • Wenjuan ChenEmail author
  • Anran Chen
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1074)

Abstract

In this paper, we introduce the notion of very true operator on a quasi-pseudo-MV algebra (qpMV-algebra, for short) and investigate the new algebraic structure qpMV\(_{vt}\)-algebra which will generalize psMV\(_{vt}\)-algebra defined in [10]. First we discuss some properties of very true operator on a qpMV-algebra. Next we define the dual notion very false operator on a qpMV-algebra and prove that there exists a one-to-one correspondence between very true operators and very false operators on any qpMV-algebra. Finally, some cases of qpMV\(_{vt}\)-algebras with truth-depressing hedges are given.

Keywords

Very true operators Quasi-pseudo-MV algebras qpMV\(_{vt}\)-algebras 

References

  1. 1.
    Botur, M., Svrcek, F.: Very true on CBA fuzzy logic. Math. Slovaca. 60(4), 435–446 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chajda, I., Kolarik, M.: Very true operators in effect algebras. Soft. Comput. 16(7), 1213–1218 (2012)CrossRefGoogle Scholar
  3. 3.
    Chen, W.J., Dudek, W.A.: Quantum computational algebra with a non-commutative generalization. Math. Slovaca. 66(1), 1–16 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, W.J., Davvaz, B.: Some classes of quasi-pseudo-MV algebras. Logic J. IGPL. 24(5), 655–673 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, W.J., Dudek, W.A.: Ideals and congruences in quasi-pseudo-MV algebras. Soft. Comput. 22(12), 3879–3889 (2018)CrossRefGoogle Scholar
  6. 6.
    Ciungu, L.C.: Very true pseudo-BCK algebras. Soft Comput. (2019).  https://doi.org/10.1007/s00500-019-03859-x
  7. 7.
    Georgescu, G., Iorgulescu, A.: Pseudo MV algebras. Mult.-Valued Log. 6, 95–135 (2001)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hajek, P.: On very true. Fuzzy Sets Syst. 124, 329–333 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ledda, A., Konig, M., Paoli, F., Giuntini, R.: MV algebras and quantum computation. Studia Log. 82, 245–270 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Leustean, I.: Non-commutative Lukasiewicz propositional logic. Arch. Math. Logic 45, 191–213 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu, J.M., Chen, W.J.: A non-communicative generalization of quasi-MV algebras. In: 2016 IEEE International Conference on Fuzzy Systems, pp. 122–126. FUZZ-IEEE (2016)Google Scholar
  12. 12.
    Rachunek, J., Salounova, D.: Truth values on generalizations of some commutative fuzzy structures. Fuzzy Sets Syst. 157, 3159–3168 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vychodil, V.: Truth-depressing hedges and BL-logic. Fuzzy Sets Syst. 157, 2074–2090 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, J.T., Xin, X.L., Jun, Y.B.: Very true operators on equality algebras. J. Comput. Anal. Appl. 24(3) (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of JinanJinanChina
  2. 2.College of Science and EngineeringUniversity of MinnesotaTwin CitiesUSA

Personalised recommendations