Advertisement

Assessment of Global Left Ventricle Deformation Using Recursive Spherical Harmonics

  • Malika JallouliEmail author
  • Wafa Belhadj KhalifaEmail author
  • Anouar Ben MabroukEmail author
  • Mohamed Ali MahjoubEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1074)

Abstract

In this paper, the Heart Left Ventricle is modelised using a set of recursive spherical harmonics. We model the left ventricle in a compact and relevant way and secondly, it permits to define a global deformation of the anatomical structure between systole and diastole phases by applying Recursive Spherical Harmonics are applied on three left ventricle meshes acquired from cardiac pet scan to analyze their deformation during the cardiac cycle, evaluate cardiac global function and diagnose ventricular diseases. Experimental results proved the efficiency and accuracy of the present method compared to classical spherical harmonics modeling in terms of necessary number of coefficients and running time.

Keywords

Spherical harmonics Recursivity Left ventricle Global deformation Cardiac function 

References

  1. 1.
    Schneider, J.E.: Assessment of global cardiac function. Methods Mol. Biol. 387–405 (2011) Google Scholar
  2. 2.
    Mihalef, V., Ionasec, R., Wang, Y., Zheng, Y., Georgescu, B., Comaniciu, D.: Patient-specific modeling of left heart anatomy, dynamics, and hemodynamics from high resolution 4D CT. In: IEEE International Symposium on Biomedical Imaging From Nano to Macro, Netherlands (2010)Google Scholar
  3. 3.
    Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.S.: Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model. IEEE Trans. Med. Imaging 29(3), 669–687 (2010). Author, F.: Article title. Journal 2(5), 99–110 (2016) CrossRefGoogle Scholar
  4. 4.
    Robert, A.: Etude de la forme et du mouvement du cœur á partir de données lacunaires. Thèse de doctorat, Ecole Nationale Supérieure des Télécommunications (1996)Google Scholar
  5. 5.
    Cohen, I., Cohen, D.: A hybrid hyperquadric model for 2D and 3D data fitting. Rapport Technique 2188 INRIA, (1994)Google Scholar
  6. 6.
    Bardinet, E., Cohen, L.D., Ayache, N.: A parametric deformable model to fit unstructured 3D data. Comput. Vis. Image Unders. 71, 39–54 (1998)CrossRefGoogle Scholar
  7. 7.
    Amini, A., Duncan, J.: Pointwise tracking of left-ventricular motion in 3D. In: Proceedings of the IEEE Workshop on Visual Motion, Princeton, New Jersey (1991)Google Scholar
  8. 8.
    Strichartz, R.S.: Local harmonic analysis on spheres. J. Funct. Anal. 77, 403–433 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jallouli, M., Zemni, M., Ben Mabrouk, A., Mahjoub, M.A. :Toward recursive spherical harmonics-issued bi-filters: part I: theoretical framework. Soft Computing (2018).  https://doi.org/10.1007/s00500-018-3596-9
  10. 10.
    Khelifa, W. B., Ben Abdallah, A., Ghorbel, F.: Three dimensional modeling of the left ventricle of the heart using spherical harmonic analysis. In: ISBI, pp. 1275–1278 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ecole Nationale d’Ingénieurs de Sousse, LATIS-Laboratory of Advanced Technology and Intelligent SystemsUniversité de SousseSousseTunisie
  2. 2.Research Unit of Algebra, Number Theory and Nonlinear Analysis UR11ES50, Department of Mathematics, Faculty of SciencesMonastirTunisia
  3. 3.Department of MathematicsHigher Institute of Applied Mathematics and InformaticsKairouanTunisia
  4. 4.Department of Mathematics, Faculty of SciencesUniversity of TabukTabukSaudi Arabia

Personalised recommendations