Advertisement

Relationships Between Dilemma Strength and Fixation Properties in Coevolutionary Games

  • Hendrik RichterEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1074)

Abstract

Whether or not cooperation is favored over defection in evolutionary games can be assigned by structure coefficients for any arrangement of cooperators and defectors on any network modeled as a regular graph. We study how these structure coefficients relate to a scaling of dilemma strength in social dilemma games. It is shown that some graphs permit certain arrangements of cooperators and defectors to possess particularly large structure coefficients. Moreover, these large coefficients imply particularly large sections of a bounded parameter plane spanned by a scaling of gamble–intending and risk–averting dilemma strength.

Keywords

Coevolutionary games Fixation properties Structure coefficients Dilemma strength 

References

  1. 1.
    Allen, B., Nowak, M.A.: Games on graphs. EMS Surv. Math. Sci. 1, 113–151 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Allen, B., Lippner, G., Chen, Y.T., Fotouhi, B., Momeni, N., Yau, S.T., Nowak, M.A.: Evolutionary dynamics on any population structure. Nature 544, 227–230 (2017)CrossRefGoogle Scholar
  3. 3.
    Broom, M., Rychtar, J.: Game-Theoretical Models in Biology. Chapman and Hall, Boca Raton (2013)CrossRefGoogle Scholar
  4. 4.
    Chen, Y.T.: Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann. Appl. Probab. 3, 637–664 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, Y.T., McAvoy, A., Nowak, M.A.: Fixation probabilities for any configuration of two strategies on regular graphs. Sci. Rep. 6, 39181 (2016)CrossRefGoogle Scholar
  6. 6.
    Hindersin, L., Traulsen, A.: Most undirected random graphs are amplifiers of selection for birth-death dynamics, but suppressors of selection for death-birth dynamics. PLoS Comput. Biol. 11, e1004437 (2015)CrossRefGoogle Scholar
  7. 7.
    Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, Cambridge (2006)CrossRefGoogle Scholar
  8. 8.
    Perc, M., Szolnoki, A.: Coevolutionary games - a mini review. BioSystems 99, 109–125 (2010)CrossRefGoogle Scholar
  9. 9.
    Richter, H.: Analyzing coevolutionary games with dynamic fitness landscapes. In: Ong, Y.S. (ed.), Proceedings of IEEE Congress on Evolutionary Computation, IEEE CEC 2016, pp. 609–616. IEEE Press, Piscataway (2016)Google Scholar
  10. 10.
    Richter, H.: Dynamic landscape models of coevolutionary games. BioSystems 153–154, 26–44 (2017)CrossRefGoogle Scholar
  11. 11.
    Richter, H.: Properties of network structures, structure coefficients, and benefit-to-cost ratios. BioSystems 180, 88–100 (2019)CrossRefGoogle Scholar
  12. 12.
    Richter, H.: Fixation properties of multiple cooperator configurations on regular graphs. Theory Biosci. 138(2), 261–275 (2019) Google Scholar
  13. 13.
    Shakarian, P., Roos, P., Johnson, A.: A review of evolutionary graph theory with applications to game theory. BioSystems 107, 66–80 (2012)CrossRefGoogle Scholar
  14. 14.
    Szabo, G., Fath, G.: Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tanimoto, J.: A simple scaling of the effectiveness of supporting mutual cooperation in donor-recipient games by various reciprocity mechanisms. BioSystems 96, 29–34 (2009)CrossRefGoogle Scholar
  16. 16.
    Tarnita, C.E., Ohtsuki, H., Antal, T., Fu, F., Nowak, M.A.: Strategy selection in structured populations. J. Theor. Biol. 259, 570–581 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Taylor, P.D., Day, T., Wild, G.: Evolution of cooperation in a finite homogeneous graph. Nature 447, 469–472 (2007)CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Kokubo, S., Jusup, M., Tanimoto, J.: Universal scaling for the dilemma strength in evolutionary games. Phys. Life Rev. 14, 1–30 (2015)CrossRefGoogle Scholar
  19. 19.
    Zukewich, J., Kurella, V., Doebeli, M., Hauert, C.: Consolidating birth-death and death-birth processes in structured populations. PLoS One 8, e54639 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Information TechnologyHTWK Leipzig University of Applied SciencesLeipzigGermany

Personalised recommendations